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Abstract
In this paper we propose new methods to statistically
assess f -Differential Privacy ( f -DP), a recent refinement
of differential privacy (DP) that remedies certain weak-
nesses of standard DP (including tightness under algo-
rithmic composition). A challenge when deploying dif-
ferentially private mechanisms is that DP is hard to val-
idate, especially in the black-box setting. This has led
to numerous empirical methods for auditing standard
DP, while f -DP remains less explored. We introduce
new black-box methods for f -DP that, unlike existing
approaches for this privacy notion, do not require prior
knowledge of the investigated algorithm. Our procedure
yields a complete estimate of the f -DP trade-off curve,
with theoretical guarantees of convergence. Additionally,
we propose an efficient auditing method that empirically
detects f -DP violations with statistical certainty, merging
techniques from non-parametric estimation and optimal
classification theory. Through experiments on a range of
DP mechanisms, we demonstrate the effectiveness of our
estimation and auditing procedures.

1 Introduction

Differential privacy (DP) [20] is a widely-used frame-
work to quantify and limit information leakage of a data-
release mechanism M via privacy parameters ε > 0 and
δ ∈ [0,1]. Mechanisms that are differentially private for
a suitable choice of ε and δ mask the contribution of in-
dividuals to their output. As a consequence, DP has been
adopted by companies and public institutions to ensure
user privacy [1, 21, 24].

Over the years, variants and relaxations of DP have
been proposed to address specific needs and challenges.
Of these, the recent notion of f -DP [19] is one of the most
notable, due to its attractive properties such as a tight

∗Corresponding author: martin.dunsche@rub.de
†Authors are listed in alphabetical order.

composition theorem, and applications such as provid-
ing an improved, simpler analysis of privatized stochastic
gradient descent (Noisy or DP-SGD), the most prominent
privacy-preserving algorithm in machine learning. f -DP
is grounded on the hypothesis testing interpretation of
DP 1 and describes the privacy of mechanism M in terms
of a real-valued function f on the unit interval [0,1]. Sev-
eral mechanisms [19] have been shown to achieve f -DP.
However, the process of designing privacy-preserving
mechanisms and turning them into real-world implemen-
tations is susceptible to errors that can lead to so-called
‘privacy violations’ [27, 35, 37]. Worse, checking such
claims may be difficult, as some implementations may
only allow for limited, black-box access. This problem
has motivated the proposal of methods that assess the
privacy of a mechanism M with only black-box access.

Within the plethora of works on privacy validation,
most approaches study mechanisms through the lens
of standard DP [6–13, 16, 18, 32–34, 44, 48, 49, 52].
In contrast, comparatively few methods examine
f -DP [3–5,30,36,38]. Moreover, many of the procedures
that feature f -DP are tailored to audit the privacy claims
of a specific algorithm, namely DP-SGD [3, 4, 38]. Our
goal is to devise methods that are not specific to a single
mechanism, but are instead applicable to a broad class of
algorithms, while only requiring black-box access. We
formulate our two objectives:

• Estimation: Given black-box access to a mecha-
nism M, estimate its true privacy parameter (i.e.,
the function f in f -DP).

• Auditing: Given black-box access to a mechanism
M and a target privacy f , check whether M violates
the targeted privacy level (i.e., given f , does M
satisfy f -DP?).

Estimation is useful when we do not have an initial con-
jecture regarding M’s privacy. It can thus be used as, e.g.,

1For a rigorous introduction to hypothesis testing and f -DP we refer
to Section 2.
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preliminary exploration into the privacy of M. Auditing,
on the other hand, can check whether an algorithm meets
a specific target privacy f and is therefore designed to
detect flaws or overly optimistic privacy guarantees. 2

Contributions

We construct a ‘general-purpose’ f -DP estimator and
auditor for both objectives, where:

(1) The estimator approximates the entire true f -DP
curve of a given mechanism M.

(2) Given a target f -DP curve, the auditor statistically
detects whether M violates f -DP. The auditor
involves a tuneable confidence parameter to control
the false detection rate.

A methodological advantage of our methods is that they
come with strong mathematical performance guarantees
(both for the estimator and the auditor). Such guaran-
tees seem warranted when making claims about the per-
formance and correctness of a mechanism. A practical
advantage of our methods is their efficiency: Our ex-
periments (Sec. 6) demonstrate high accuracy at typical
runtimes of 1-2 minutes on a standard personal device.

Paper Organization Preliminaries are introduced in
Sec. 2. In Sec. 3 we give an overview of techniques. We
propose our f -DP curve estimator in Sec. 4 and auditor
in Sec. 5. We evaluate the effectiveness of both estimator
and auditor in Sec. 6 using various mechanisms from the
DP literature, including DP-SGD. We delve into more
detail on related work in Sec. 7 and conclude in Sec. 8.
A table of notations, proofs and technical details can be
found in the Appendix.

2 Preliminaries

In this section, we provide details on hypothesis testing,
differential privacy and tools from statistics and machine
learning that our methods rely on.

2.1 Hypothesis testing
We provide a brief introduction into the key concepts
of hypothesis testing. We confine ourselves to the spe-
cial case of sample size 1, most relevant to f -DP. For
a general introduction we refer to [14]. Consider two
probability distributions P,Q on the Euclidean space Rd

and a random variable X . It is unknown from which of
the two distributions X is drawn and the task is to decide
between the two competing hypotheses

H0 : X ∼ P vs. H1 : X ∼ Q. (1)

2For a detailed discussion on the advantages of auditing f -DP, we
refer to Section 4 in [38].

The problem is similar to a classification task (see Sec-
tion 2.4 below). The key difference to classification is
that, in hypothesis testing, there exists a default belief
H0 that is preferred over H1. The user switches from H0
to H1 only if the data (X) suggests it strongly enough.
In this context, a hypothesis test is a binary, potentially
randomized function g : Rd → {0,1}, where g(X) = 0
implies to stay with H0, while g(X) = 1 implies that the
user should switch to H1 (H0 is "rejected"). Just as in
classification, the decision to reject/fail to reject can be
erroneous and the error rates of these decisions are called
α, the "type-I error", and β, the "type-II error". Their
formal definitions are

α
(g) := Pr

X∼P
[g(X) = 1], β

(g) := Pr
X∼Q

[g(X) = 0].

One test g is better than another g′, if simultaneously

α
(g) ≤ α

(g′) and β
(g) ≤ β

(g′).

This comparison of statistical tests naturally leads to the
issue of optimal tests, and we define the optimal level-α-
test as the argmin of

{β(g) : g is a test with α
(g) ≤ α}.

The minimum is achieved and the corresponding optimal
test is provided by the likelihood ratio (LR) test in the
Neyman-Pearson lemma, a fundamental result in statis-
tics. In the following, we assume the two probability
measures P,Q in hypotheses (1) have some probability
densities p,q.

Theorem 2.1 (Neyman-Pearson Lemma [39]) For
any α ∈ [0,1], the smallest type-II error β(α) among all
level-α-tests is achieved by the likelihood ratio (LR)
test, which is characterized by two constants η≥ 0 and
λ ∈ [0,1], and has the following rejection rule:

1) Reject H0 if q(X)/p(X)> η.

2) If q(X)/p(X) = η, flip an unfair coin with probabil-
ity λ of heads. If the outcome is heads, reject H0.

The constants (η,λ) are chosen such that the type-I error
is exactly α.

Notations. Neyman-Pearson motivates the use of the
following notations. For any type-I error α there is a
corresponding (optimal) β implied by the lemma. These
constants are achieved by a pair (η,λ) and we can thus
write α(η,λ),β(η,λ) for them. When we are only inter-
ested in the result of the non-randomized test with λ = 0,
we will just write α(η),β(η).



2.2 ( f -)Differential Privacy (DP)
DP requires that the output of mechanism M is similar
on all neighboring datasets D,D′ that differ in exactly
one data point (we also call D,D′ neighbors). We use the
“edit” notion of neighborhood, i.e., D′ can be obtained
from D by editing one of its entries, rather than deleting
it.

Definition 1 (DP [20]) A mechanism M is (ε,δ)-DP if
for all neighboring datasets D,D′ and any set S ,

Pr(M(D) ∈ S)≤ eε Pr(M(D′) ∈ S)+δ .

Informally, if M is (ε,δ)-DP, an adversary’s ability to
decide whether M was run on D or D′ is bounded by δ and
eε. For instance, any statistical level-α-test g that aims at
deciding this problem must incur a type-II-error of at least
1−eε α−δ. The notion of f -DP was introduced to make
this observation more rigorous. Given a pair of neighbors
D and D′ and a sample X , consider the hypotheses:

H0 : X ∼ P H1 : X ∼ Q,

where M(D) and M(D′) are distributed to P,Q, respec-
tively. Roughly speaking, good privacy requires these
two hypotheses to be hard to distinguish. That is, for
any hypothesis test with type-I error α, its type-II error β

should be large. This is captured by the trade-off function
T between P and Q.

Definition 2 (Trade-off function [19]) For any two dis-
tributions P and Q on the same space, the trade-off func-
tion T is:

T (α) := inf{β(g) : g test with α
(g) ≤ α}

M is f -DP if its privacy is at least as good (its trade-off
function is at least as large) as f , when considering all
neighboring datasets.

Definition 3 ( f -DP [19]) A mechanism M is f -DP if for
all neighboring datasets D,D′ it holds that T ≥ f . Here,
T is the trade-off function implied by M(D) ∼ P and
M(D′)∼ Q.

We say f is the optimal/true privacy parameter if it
is the largest f such that M is f -DP—such optimality is
necessary to define for meaningful f -DP estimation, as
any M is trivially f -DP for f = 0 (since the type-II error
in hypothesis testing is always ≥ 0).

2.3 Kernel Density Estimation
Kernel density estimation (KDE) is a well-studied tool
from non-parametric statistics to approximate an un-
known density p by an estimator p̂. More concretely, in

the presence of sample data X1, . . . ,Xn ∼ p with Xi ∈ Rd ,
the KDE for p is given by

p̂(t) :=
1

nbd

n

∑
i=1

K
( t−Xi

b

)
.

One can think of the KDE as a smoothed histogram where
the bandwidth parameter b > 0 corresponds to the bin
size for histograms. The kernel function K indicates the
weight we assign each observation Xi and is oftentimes
taken to be the Gaussian kernel with

K(t) =
1

(2π)d/2 exp
(
−|t|

2

2

)
.

The appropriate choice of b and K can ensure the uniform
convergence of p̂ to the true, underlying density p (as in
Assumption 2). Higher smoothness of the density p is
generally associated with faster convergence rates and
we refer to [26] and [41] for a rigorous definition of KDE
and associated convergence results.

2.4 Machine Learning Classifiers
Binary classifiers are the final addition to our techni-
cal toolbox. We begin with some notations: We denote
a generic classifier on the Euclidean space Rd by φ.
Formally, a classifier is not that different from a statis-
tical test: It is a (potentially random) binary function
φ : Rd →{0,1}. However, its interpretation is different
from hypothesis testing, because we do not have a default
belief in a label 0 or 1. Let us now consider a probability
distribution P on the combined space of inputs and out-
puts Rd×{0,1}. A classification error has occurred for
a pair (x,y) ∈ Rd ×{0,1}, whenever φ(x) ̸= y. If (x,y)
are randomly drawn from P , we define the risk of the
classifier φ w.r.t. to P as

R(φ) = Pr
(x,y)∼P

[φ(x) ̸= y].

Bayes Classification Problem. The Bayes classification
problem refers to a setup to generate the distribution P ,
where a Bernoulli random variable Y ∈ {0,1} is drawn
and then a second variable X with

(X |Y = 0)∼ P, (X |Y = 1)∼ Q.

In our work, we specifically consider the case where Y is
drawn from a fair coin flip (i.e., Pr[Y = 0] = Pr[Y = 1] =
1
2 ), and we denote this setup by P [P,Q].
Bayes (Optimal) classifiers. φ∗ minimizes the risk in the
Bayes classification problem. However, φ∗ is usually un-
known in practice because it depends on the (unknown) P
and Q. To approximate φ∗, one can use a feasible nearest-
neighbor classifier [2]. Specifically, a k-nearest neighbors



(k-NN) classifier, denoted as φNNk,n, assigns a label to an
observation o ∈ O by identifying its k closest neighbors3

from the size n training set. The label is then determined
by a majority vote among these k neighbors.

The following convergence result for k-NN gauges
how close the true risk R(φNNk,n) of the k-NN classifier φNNk,n
is to the risk of the optimal classifier, R(φ∗).

Theorem 2.2 (Convergence of k-NN Classifier [17])
Let P be a joint distribution with support O×Y . If the
conditional distribution P |Y has a density, O ⊆Rd , and
k =
√

n, then for every ε > 0 there is an n0 such that for
n > n0,

Pr[|R(φNNk,n)−R(φ∗)|> ε]≤ 2e−nε2/(72c2
d),

where cd
4 is the minimal number of cones centered at

the origin of angle π/6 that cover Rd . Note that if the
number of dimensions d is constant, then cd is also a
constant.

3 Overview of Techniques

Our goal is to provide an estimation and auditing pro-
cedure for the optimal privacy curve f of a mechanism
M. This task can be broken down into two parts: (1) Se-
lecting datasets D,D′ that cause the largest difference
in M’s output distributions and (2) Developing an esti-
mator/auditor for the trade-off curve given that choice
of D,D′. In line with previous works on black-box esti-
mation/auditing, we focus on task (2). The selection of
D,D′ has been studied in the black-box setting and can
typically be guided by simple heuristics [13, 18, 33].

Our proposed estimator of a trade-off curve relies on
KDEs. Density estimation in general and KDE in partic-
ular is an important tool in the black box assessment of
DP. For some examples, we refer to [32], [6] and [31].
The reason is that DP can typically be expressed as some
transformation of the density ratio p/q – this is true for
standard DP (a supremum), Rényi DP (an integral) and,
as we exploit in this paper, f -DP via the Neyman-Pearson
test. A feature of our new approach is that we do not sim-
ply plug in our estimators in the definition of f -DP, but
rather use them to make a novel, approximately optimal
test. This test is not only easier to analyze than the stan-
dard likelihood ratio (LR) test but also retains similar
properties (see the next section for details).

Our second goal (Sec. 5.2) is to audit whether a mech-
anism M satisfies a claimed trade-off f , given datasets
D and D′. At a high level, we address this task by iden-
tifying and studying the most vulnerable point on the
trade-off curve T of M — the point most likely to vi-
olate f -DP. We begin by using our f -DP estimator to

3In our context, closeness is measured using Euclidean distance
4By Lemma 5.5 of [17], cd satisfies cd ≤ (1+2/

√
2−
√

3)d −1.

compute a value η (from the Neyman-Pearson frame-
work in Sec. 2.1), which defines a point

(
α(η),β(η)

)
on the true privacy curve T of the mechanism M. η is
chosen such that

(
α(η),β(η)

)
has the largest distance

from the claimed trade-off curve f asymptotically, which
we prove in Prop. 4.3. Next, by extending a technique
proposed in [34], we express

(
α(η),β(η)

)
in terms of

the Bayes risk of a carefully constructed Bayesian classi-
fication problem, and approximate that Bayes risk using
a feasible binary classifier (e.g., k-nearest neighbors). By
deploying the k-NN classifier, we obtain a confidence
interval that contains our vulnerable point (α,β) with
high probability (in the Appendix, we provide a brief
explanation for choosing confidence intervals over the
credible intervals used in other works [38, 51]). Finally,
our auditor decides whether to reject (or fail to reject) the
claimed f curve by checking whether the corresponding
point (α,β′) on f with f (α) = β′ is contained in this
interval or not. Leveraging the convergence properties of
k-NN, our auditor provides a provable and tuneable con-
fidence region that depends on sample size. We also note
that the connection between Bayes classifiers and f -DP
that underpins our auditor may be of independent interest,
as it offers a new interpretation of f -DP by framing it in
terms of Bayesian classification problems.

4 Goal 1: f -DP Estimation

In this section, we develop a new method for the approxi-
mation of the entire optimal trade-off curve. The trade-off
curve results from a study of the Neyman-Pearson test,
where any type-I error α is associated with the smallest
possible type-II error β (see Section 2.1 for details). Un-
derstood as a function in α, we denote the type-II error
by T : [0,1]→ [0,1] and call it a trade-off curve. We note
that any trade-off curve is continuous, non-increasing and
convex (see [19]).

4.1 Estimation of the f -DP curve
Our approach is based on the perturbed likelihood ratio
(LR) test which mimics the properties of the optimal
Neyman-Pearson test, but requires less knowledge about
the distributions involved. In the following, we denote by
P,Q the output distributions of M(D),M(D′) respectively.
The corresponding probability densities are denoted by
p,q.
The perturbed LR test. The optimal test for the hypothe-
ses pair

H0 : X ∼ p vs. H1 : X ∼ q

is the Neyman-Pearson test described in Section 2.1. It is
also called a likelihood ratio (LR) test, because it rejects
H0 if the density ratio satisfies q(X)/p(X)> η for some



threshold η. If q(X)/p(X) = η the test rejects randomly
with probability λ. In a black-box scenario, this process
is difficult to mimic, even if two good estimators, say
p̂, q̂ of p,q are available. Even if p̂≈ p and q̂≈ q, it will
usually be the case that

q(x)/p(x) = η does not imply q̂/ p̂ = η

(it may hold that p̂/q̂≈ η, but typically not exact equal-
ity). In principle, one could cope with this problem by
modifying the condition q̂/ p̂ = η to ≈ η to mimic the
optimal test. Yet, the implementation of this approach
turns out to be difficult. In particular, it would involve
two tuneable arguments (η,λ), as well as further parame-
ters (to specify "≈"), making approximations costly and
unstable. A simpler and more robust approach is to focus
on a different test rather than the optimal one - a test that
is close to optimal but does not require the knowledge
of when q/p is constant. For this purpose, we introduce
here the novel perturbed LR test (PLRT). We define it
as follows: Let U ∈ [−1/2,1/2] be uniformly distributed
and h > 0 a (small) number. Then we make the decision

”reject H0 if q(X)/p(X)> η+hU”. (2)

Just as the Neyman-Pearson test, the perturbed LR test
is randomized. Instead of flipping a coin when q/p = η,
the threshold η is perturbed with a small, random noise
term. Obviously the perturbed LR test does not require
knowledge of the level sets {q/p = η}, making it more
practical for our purposes. To formulate a theoretical
result for this test, we impose two natural assumptions.

Assumption 1

i) The densities p,q are continuous.

ii) There exists only a finite number of values η ≥ 0
where the set {q/p = η} has positive mass.

The second assumption is met for all density models
that the authors are aware of and in particular for all
mechanisms commonly used in DP. Let us denote the
f -DP curve of the perturbed LR test by Th. The next
Lemma shows that for small values of h the perturbed
LR test performs as the optimal LR test.

Lemma 4.1 Under Assumption 1 it holds that

lim
h↓0

sup
α∈[0,1]

|T (α)−Th(α)|= 0.

Approximating Th. The Lemma shows that to create an
estimator of the optimal trade-off curve T , it is sufficient
to approximate the curve Th of the perturbed LR test for
some small h. This is an easier task, since we do not
need to know the level sets {q/p = η} for all η. Indeed,
suppose we have two estimators p̂, q̂. Then we can run

a perturbed LR test with them, just as in equation (2). A
short theoretical derivation (found in the appendix) then
shows that running the perturbed LR test for p̂, q̂ and
some threshold η, yields the following type-I and type-II
errors:

α̂h(η) :=
∫

x∈[−h/2,h/2]

1
h

∫
q̂/p̂>η+x

p̂, (3)

β̂h(η) := 1−
∫

x∈[−h/2,h/2]

1
h

∫
q̂/p̂>η+x

q̂. (4)

The entire trade-off-curve for the perturbed LR test with
(p̂, q̂) is then given by T̂h with

T̂h(α) = β̂h(η) ⇔ α = α̂h(η). (5)

For the curve estimate T̂h to be close to Th (and thus T ),
the involved density estimators need to be adequately
precise. We hence impose the following regularity condi-
tion on them. In the condition, n is the sample size used
to create the estimators.

Assumption 2 The density estimators p̂, q̂ are them-
selves continuous probability densities that decay to 0
at ±∞ (see eq. (15) for a precise definition) . For a null-
sequence of non-negative numbers (an)n∈N they satisfy

Pr[sup
x
|p̂(x)− p(x)|> an] = o(1)

and Pr[sup
x
|q̂(x)−q(x)|> an] = o(1).

The above assumption is in particular satisfied by KDE
(see Section 2.3), where the convergence speed an de-
pends on the smoothness of the underlying densities.
However, in principle other estimation techniques than
KDE could be used, as long as they produce continuous
estimators. The next result formally proves the consis-
tency of T̂h. The notation of "oP(1)" refers to a sequence
of random variables converging to 0 in probability.

Theorem 4.2 Suppose that Assumptions 1 and 2 hold,
and that h = hn is a positive number depending on n with
hn→ 0 and hn/an→ ∞. Then, as n→ ∞ it follows that

sup
α∈[0,1]

|T̂h(α)−T (α)|= oP(1).

The above result proves that simultaneously for all α, the
curve T̂h approximates the optimal trade-off function T .
Thus, we have achieved the first goal of this work. The
(very favorable) empirical properties of T̂h will be studied
in Section 6. We have also incorporated Algorithm 3 for
an overview of the procedure in the appendix.

4.2 Finding maximum vulnerabilities
We conclude this section by some preparations for the
second goal - auditing f -DP. The precise problem of



auditing is described in Section 5.2. Here, we only men-
tion that the task of auditing is to check (in some sense)
whether f -DP holds for a claimed trade-off curve, say
f = T (0). As an initial step, to check T (0)-DP, we cre-
ate the estimator T̂h for the optimal curve T . If T (0)-DP
holds, this means that

T (α)≥ T (0)(α) ∀α ∈ [0,1]. (6)

A priori, we cannot say whether this is true or not. How-
ever, by comparing our estimator T̂h with T (0) we can
gather some evidence. For example, if T̂h(α) is much
smaller than T (0)(α) for some α, it then seems that the
claim in (6) is probably false. We will develop a rigorous
criterion for what "much smaller" means in the next sec-
tion. For now, we will confine ourselves to identifying a
point where privacy seems most likely to be broken. We
therefore define

η̂
∗ ∈ argmax

{
T (0)(α̂h(η))− T̂h(α̂h(η)) : η≥ 0

}
(7)

and the next result shows that the discrepancy between
T (0) and T is indeed maximized in η̂∗ for large n.

Proposition 4.3 Suppose that the assumptions of Theo-
rem 4.2 hold. Then, it follows that

T (0)(α̂h(η̂
∗))−T (α̂h(η̂

∗))

= sup
α∈[0,1]

[
T (0)(α)−T (α)

]
+oP(1).

The threshold η̂∗ demarcates the greatest weakness of
the T (0)-privacy claim and it is therefore ideally suited as
a starting point for our auditing approach in Section 5.2.

5 Goal 2: Auditing f -DP

In this section, we develop methods for uncertainty quan-
tification in our assessment of T . We begin with Sec-
tion 5.1, where we derive (two dimensional) confidence
regions for a pair of type-I and type-II errors. Our ap-
proach relies on the approximation of Bayes optimal
classifiers using the k-nearest neighbor (k-NN) method.
The resulting confidence regions are used in Section 5.2
as a subroutine of a general-purpose f -DP auditor that
combines the estimators from KDE and the confidence
regions from k-NN.

5.1 Pointwise confidence regions
In this section, we introduce the BayBox estimator, an
algorithm designed to provide point-wise estimates of
the trade-off curve T with theoretical guarantees. Specif-
ically, for a given threshold η > 0, the BayBox estimator

outputs an estimate of the trade-off point (α(η),β(η)).
This estimate is guaranteed to be within a small additive
error of the true trade-off point, with high probability.

The BayBox estimator is backed up by the observation
that the quantity α(η) (also β(η)) can be expressed as
the Bayes risk of a carefully constructed Bayesian clas-
sification problem. For instance, to compute α(η) when
η≥ 1, a theoretical derivation (provided in the appendix)
shows that this computation is equivalent to computing
the Bayes risk for the Bayesian classification problem
P
[
[P]

η
,Q
]

5. The mixture distribution [P]
η

is formally
defined in the following.

Definition 4 (Mixture Distribution) Let P be a distri-
bution and η ∈ [1,+∞). The mixture distribution [P]

η
is

defined as:

[P]
η
=

{
P with probability 1

η
,

⊥ with probability 1− 1
η
.

We note that recent work [34] showed that the param-
eters of approximate DP can be expressed in terms of
the Bayes risk of carefully constructed Bayesian classifi-
cation problems. They further showed how to construct
such classification problems using mixture distributions.
Building on this foundation, our results significantly ex-
tend their approach by establishing a direct link between
the theory of optimal classification and f -DP.

Algorithm 1 BayBox: A Black-Box Bayesian Classifica-
tion Algorithm for f -DP Estimation
Require: Black-box access to M; Threshold η > 0; Sample size n.

Ensure: An estimate (α̃(η), β̃(η)) of (α(η),β(η)) for tuple (P,Q),
where M(D) and M(D′) are distributed according to P,Q, respectively.
1: Set the classifier φ for the Bayesian classification problem

P
[
[P]

η
,Q
]

if η≥ 1; otherwise, set φ for the problem P
[
P, [Q]1/η

]
.

By default, use the k-NN classifier φNNk,n with k =
√

n.
2: function BayBox Estimator BBφ(M,D,D′,η,n)
3: Set cntα← 0 and cntβ← 0
4: for i ∈ [n] do
5: x←M(D); x′←M(D′)
6: If φ(x) = 1 then cntα← cntα +1
7: If φ(x′) = 1 then cntβ← cntβ +1
8: end for
9: Return (α̃(η), β̃(η))← ( cntα

n ,1− cntβ
n )

10: end function

The key insight to connect classification and f -DP is
that the trade-off point (α(η),β(η)) can be expressed
as the expected classification error of the Bayes optimal
classifier. We propose a simple Monte Carlo estimator for
the expected classification error and an implementation is
given by the BayBox estimator in Algorithm 1. In theory,

5Refer to Section 2.4 for the notation and setup of the Bayesian
classification problem.



if the Bayes optimal classifier φ∗ were known and used
as input of the BayBox algorithm, the output of BayBox
would be an unbiased estimator for (α(η),β(η)) that has
a small error with high probability. A formal statement
is provided in Lemma B.2 of the appendix. In practice
φ∗ is unknown, but can be approximated using a k-NN
classifier. A statement of the theoretical approximation
properties is given in the next theorem. The notation "E"
refers to the expectation of a random variable, conditional
on the threshold η.

Theorem 5.1 Suppose that Assumption 1 holds. Let η,
(α(η),β(η)), (α̃(η), β̃(η)), and φ be defined as in Algo-
rithm 1. Set φ to the k-NN classifier φNNk,n, with k =

√
n,

for the corresponding Bayesian classification problem :
1) Then, for any γ ∈ (0,1) and any n ≥ 2 it holds with
probability ≥ 1− γ that

max
{
|α̃(η)−E[α̃(η)]|, |β̃(η)−E[β̃(η)]|

}
≤ w(γ),

2) Moreover, for any γ ∈ (0,1) and for all n sufficiently
large it holds with probability ≥ 1− γ that

max
{
|α̃(η)−α(η)|, |β̃(η)−β(η)|

}
≤ (25cd)w(γ) ,

Here, cd is a constant depending on the dimension d with
cd ≤ 4.9d and the bound w(γ) is defined as

w(γ) :=
√

ln(4/γ)/(2n) . (8)

The two statements in the above theorem are dis-
tinct and have different interpretations. Part 1) shows
that the output of the BayBox algorithm (α̃(η), β̃(η))
is randomly fluctuating in a narrow region of width
w(γ) around its expectation (Eα̃(η),Eβ̃(η)). The expec-
tation (Eα̃(η),Eβ̃(η)) can be shown to always lie on or
above the optimal trade-off curve (Remark 3, in the ap-
pendix) and in this sense the output (α̃(η), β̃(η)) can be
slightly biased (it may overstate privacy). Part 2) of the
theorem entails the stronger statement that (α̃(η), β̃(η))
is actually close to the true value (α(η),β(η)). The
price is a looser bound by a factor of (25cd), which
arises from bounding the distances |Eα̃(η)−α(η)| and
|Eβ̃(η)−β(η)|. In principle, auditing mechanisms for
f -DP can be based on either part 1) or part 2) of the
theorem, and in the next section we give details. Practi-
cally, using part 1) yields better results (more accurate
detection for lower sample sizes) and will be used in our
below methodology. Notice that it is also a finite sample
bound and non-asymptotic.

5.2 Auditing f -DP
Outline In the remainder of this section, we present an
f -DP auditor that fuses the localization of maximum vul-
nerabilities (by the KDE method) with the confidence

guarantees (afforded by the k-NN method). We can de-
scribe the problem as follows: Usually, when a DP mech-
anism M is developed it comes with a privacy guarantee
for users. In the case of standard DP this takes the form
of a single parameter ε0. In the case of f -DP a privacy
guarantee is associated with a continuous trade-off curve
T (0). Essentially the developer promises that the mecha-
nism will afford at least T (0)-DP. The task of the auditor
is to empirically and reliably check this claim.
The auditor We proceed in two steps. Since we do not
want to force the two steps to depend on the same sample
size parameters, we introduce two (potentially different)
sample sizes n1,n2. First, using the KDE method, we
find an estimated value of maximum vulnerability η̂∗

(based on a sample of size n1). This is possible according
to Proposition 4.3. Second, we apply the BayBox algo-
rithm with input η̂∗ and sample size n2, giving us outputs
(α̃(η̂∗), β̃(η̂∗)). Then, we draw on Theorem 5.1 to check
the T (0)-DP claim. More precisely, recall that the pair
(Eα̃(η̂∗),Eβ̃(η̂∗)) lies on or above the optimal, unknown
trade-off curve T . This is intuitively clear, because any
classifier will have a worse (at best equal) performance
as the Bayes optimal classifier, which lies exactly on the
curve T . Now, from Theorem 5.1 part 1) we know that the
pair (Eα̃(η̂∗),Eβ̃(η̂∗)) is included with high probability
inside the box

□γ :=
[
α̃(η̂∗)−w(γ), α̃(η̂∗)+w(γ)

]
(9)

×
[
β̃(η̂∗)−w(γ), β̃(η̂∗)+w(γ)

]
.

This means that □γ includes points that are above the op-
timal trade-off curve T with high probability. Now there
are two cases: First, if the claim of T (0)-DP is true (i.e.
T (0) ≤ T ), then some points in □γ must also be above
T (0). For our auditor this means that if there are points
in □γ that are above T (0), we will detect "no privacy vio-
lation" (see for an illustration Figure 4). In other words,
our findings are compatible with T (0)-DP. Conversely, if
we observe that the entire box □γ is below T (0), then our
auditor will detect a "privacy violation" and our findings
are at odds with T (0)-DP (see for an illustration Figure
5). Algorithm 2 summarizes the procedure we have just
described. It uses a small geometrical argument to check
more easily whether the entire box is below T (0) or not
(see lines 6−7 of the algorithm).
Theoretical analysis To provide theoretical guarantees
for the algorithm, we add a mathematical assumption on
the trade-off curve of p∼M(D),q∼M(D′).

Assumption 3 The optimal trade-off curve T corre-
sponding to the output densities p,q is strictly convex.

We can now formulate the main theoretical result for the
auditor.



Algorithm 2 Privacy Violation Detection Algorithm
Require: Mechanism M, neighboring databases D,D′, sample sizes

n1,n2, confidence level γ, threshold vector η, claimed curve
T (0).

Ensure: "Violation" or "No Violation".
1: function Auditor(M,D,D′,n1,n2,γ,η,T (0))
2: Compute T̂h using PLRTh

A (M,D,D′,η,n1) for all ηi ∈ η.

3: Compute η̂∗ ∈ argmax
{

T (0)(α̂h(η))− T̂h(α̂h(η)) : η≥ 0
}

.

4: Run the k-NN BayBox estimator BBφNNk,n2 (M,D,D′, η̂∗,n2) to
obtain (α̃(η̂∗), β̃(η̂∗)).

5: Calculate the threshold w(γ) from eq. (8)
6: Calculate i∗ as the solution to T (0)(i∗) = β̃(η̂∗)+w(γ).
7: if i∗ > α̃(η̂∗)+w(γ) then
8: return "Violation".
9: else

10: return "No Violation".
11: end if
12: end function

Theorem 5.2 Suppose that Assumptions 1 and 2 hold,
let γ ∈ (0,1) be user-determined and denote the output
of Auditor(M,D,D′,n1,n2,γ,η, T (0)) by A.

1) Then, if T (0)(α)≤ T (α) for all α ∈ [0,1] (no viola-
tion of T (0)-DP), it follows for any n1,n2 ≥ 2

Pr
[
A = ”No Violation”

]
≥ 1− γ.

2) Suppose that additionally Assumption 3 holds. Then,
if T (0)(α∗)> T (α∗) for some α∗ ∈ [0,1] (a violation
of T (0)-DP), it follows that

lim
n1→∞

liminf
n2→∞

Pr
[
A = ”Violation”

]
= 1.

Part 1) of the theorem states that the risk of falsely detect-
ing a violation can be made arbitrarily small (≤ γ) by the
user. On the other hand, if some violation exists, part 2)
assures that it will be reliably detected for large enough
sample sizes. We note that for smaller values of γ larger
sample sizes are typically needed to detect violations.
This follows from the definition of the box □γ in (9).
The theoretical Assumptions 1-2 of the theorem are com-
parable to related works [31, 34] and require smoothness
of the output distributions p,q. Such assumptions are
required to avoid known impossibility results in privacy
estimation (see [22]). Assumption 3 of a strictly convex
trade-off function is often satisfied (e.g. for Gaussian
type mechanisms), but can be further relaxed. A sim-
ple to prove but fairly general relaxation is that T is only
strictly convex in a sufficiently small, open neighborhood
of the set argmax(T (0)−T ). We do not include it here,
to avoid making the results even more technical.

Remark 1 The auditor in Algorithm 2 uses the threshold
η̂∗ (see eq. 7), to locate the maximum vulnerability. We
point out that any other method to find vulnerabilities

would still enjoy the guarantee from part 1) of Theorem
5.2 (it is a property of k-NN), but not necessarily of part
2). It might be an interesting subject of future work to
consider other ways of choosing η̂∗ (e.g. based on the
two dimensional Euclidean distance between T (0) and
T̂h rather than the supremum distance).

Remark 2 Our black-box algorithms for estimation and
auditing face computational limitations due to sample
size requirements and the curse of dimensionality. These
challenges arise from the black-box setting itself, where
we require larger amounts of data samples to make up
for missing information and knowledge with regard to
algorithm structure. In addition, higher dimensional algo-
rithm output only increases the need for larger sampling
efforts. This makes the auditing of machine learning on
large, real-world datasets challenging. Here, white-box
methods that aim at minimizing the amount of trained
models needed for a privacy audit can be of help (see
e.g. [38]). We discuss how modifications of our algo-
rithms could help with these limitations in Section 8.

6 Experiments

We investigate the empirical performance of our new
procedures in various experiments to demonstrate their
effectiveness. Recall that our procedures are developed
for two distinct goals, namely estimation of the optimal
trade-off curve T (see Section 4) and auditing a privacy
claim T (0) (see Section 5). We will run experiments for
both of these objectives.
Experiment Setting: Throughout the experiments, we
consider databases D,D′ ∈ [0,1]r, where the participant
number is always r = 10. As discussed in Section 3, we
first choose a pair of neighboring datasets such that there
is a large difference in the output distributions of M(D)
and M(D′). We can achieve this by simply choosing D
and D′ to be as far apart as possible (while still remaining
neighbors) and we settle on the choice

D = (0, . . . ,0) and D′ = (1,0, . . . ,0) (10)

for all our experiments.

6.1 Mechanisms
In this section, we test our methods on two frequently
encountered mechanisms from the auditing literature:
the Gaussian mechanism and differentially private
Stochastic Gradient Descent (DP-SGD). We study
two other prominent DP algorithms – the Laplace and
Subsampling mechanism – in Appendix B.



Gaussian mechanism. We consider the summary statis-
tic S(x) = ∑

10
i=1 xi and the mechanism

M(x) := S(x)+Y ,

where Y ∼N (0,σ2). The statistic S(x) is privatized by
the random noise Y if the variance σ2 of the Normal
distribution is appropriately scaled. We choose σ = 1
for our experiments and note that - in our setting - the
optimal trade-off curve is given by

TGauss(α) = Φ(Φ−1(1−α)−µ)

with µ = 1. We point the reader to [19] for more details.

DP-SGD. The DP-SGD mechanism is designed to (pri-
vately) approximate a solution for the empirical risk min-
imization problem

θ
∗ = argminθ∈ΘLx(θ) with Lx(θ) =

1
r

r

∑
i=1

ℓ(θ,xi) .

Here, ℓ denotes a loss function, Θ a closed convex set
and θ∗ ∈Θ the unique optimizer. For sake of brevity, we
provide a description of DP-SGD in the appendix (see Al-
gorithm 4). In our setting, we consider the loss function
ℓ(θ,xi)=

1
2 (θ−xi)

2, initial model θ0 = 0 and Θ=R. The
remaining parameters are fixed as σ = 0.2,ρ = 0.2,τ =
10,m = 5. In order to have a theoretical benchmark for
our subsequent empirical findings, we also derive the the-
oretical trade-off curve TSGD analytically for our setting
and choice of databases (see Appendix B for details). Our
calculations yield

TSGD(α) = ∑
I⊂{1,...,τ}

1
2τ

Φ

(
Φ
−1(1−α)− µI

σ̄

)
,

where µI is chosen as in (14) and σ̄ as in (13).

6.2 Simulations
We begin by outlining the parameter settings of our KDE
and k-NN methods for our simulations. We then discuss
the metrics employed to validate our theoretical findings
and, in a last step, present and analyze our simulation
results.
Parameter settings: For the KDEs, we consider
different sample sizes of n1 = 102,103,104,105,106 and
we fix the perturbation parameter at h = 0.1. For the
bandwidth parameter b (see Sec. 2.3), we use the method
of [42]. To approximate the optimal trade-off curve, we
use 1000 equidistant values for η between 0 and 15 (see
Algorithm 3 for details on the procedure). For the k-NN,
we set the training sample size to n2 = 103,104,105 and
testing sample size to 103,104 and 105.

Figure 1: MSE defined in (11) to empirically validate
Theorem 4.2 for varying sample sizes n1 and over 1000

simulation runs each.

Estimation The first goal of this work is estimation of the
optimal trade-off curve T . In our experiments, we want
to illustrate the uniform convergence of the estimator T̂h
to the optimal curve T , derived in Theorem 4.2. There-
fore, we consider increasing sample sizes n1 to study
the decreasing error. The distance of T̂h and T in each
simulation run is measured by the uniform distance6

ErrorT := sup
α∈[0,1]

|T̂h(α)−T (α)|.

To study not only the distance in one simulation run, but
across many, we calculate ErrorT in 1000 independent
runs and take the (empirical) mean squared error

MSE(ErrorT ) := E
[
Error2

T
]
. (11)

The results are depicted in Figure 1 for the DP algorithms
described in this section and the appendix. On top of that,
we also construct figures that upper and lower bound the
worst case errors for the Gaussian mechanism and DP-
SGD over the 1000 simulation runs. These plots visually
show how the error of the estimator T̂h shrinks as n1
grows. The results are summarized in Figures 2-3.

Inference Next, we turn to the second goal of this work:
Auditing a T (0)-DP claim for a postulated trade-off curve
T (0). The theoretical foundations of our auditor can be
found in Theorem 5.2. The theorem makes two guaran-
tees: First, that for a mechanism M satisfying T (0)-DP the
auditor will (correctly) not detect a violation, except with
low, user-determined probability γ. Second, if M violates
T (0)-DP, the auditor will (correctly) detect the violation
for sufficiently large sample sizes n1,n2. Together, these
results mean that if a violation of T (0)-DP is detected
by the auditor, the user can have high confidence that M

6Of course, one cannot practically maximize over all (infinitely
many) arguments α ∈ [0,1]. The estimator T̂h is made for a grid of
values for η (see our parameter settings above) and we maximize over
all gridpoints.



(a) n1 = 103 (b) n1 = 104 (c) n1 = 105

Figure 2: Estimation of the Gaussian Trade-off curve TGauss for varying sample sizes and µ = 1. Min- and Max Curve
lower- and upper bound the worst point-wise deviation from the true curve TGauss over 1000 simulations.

(a) n1 = 103 (b) n1 = 104 (c) n1 = 105

Figure 3: Estimation of the DP-SGD Trade-off curve TSGD for varying sample sizes. Min- and Max Curve lower- and
upper bound the worst point-wise deviation from the true curve TSGD over 1000 simulations.

does indeed not satisfy T (0)-DP. For the first part, we con-
sider a scenario, where the claimed trade-off curve T (0)

is the correct one T (0) = T (M does not violate T (0)-DP).
For the second part, we choose a function T (0) above the
true curve T (M violates T (0)-DP). We will consider both
scenarios for the Gaussian mechanism and DP-SGD. We
run our auditor (Algorithm 2) with parameters n1 = 104

and γ = 0.05 fixed. The choice of γ = 0.05 is standard for
confidence regions in statistics and we further explore the
impact of n1 and γ in additional experiments in Appendix
B. Here, we focus on the most impactful parameter, the
sample size n2 and study values of n2 = 103,104,105.
Technically, the auditor only outputs a binary response
that indicates whether a violation is detected or not. How-
ever, in our below experiments, we depict the inner work-
ings of the auditor and geometrically illustrate how a
decision is reached. More precisely, in Figure 4 we de-
pict the claimed trade-off curve T (0) as a blue line. The
auditor makes an estimate for the true trade-of curve
T , namely T̂h depicted as the orange line. The location,
where the orange line (estimated DP) and the blue line
(claimed DP) are the furthest apart is indicated by the
vertical, dashed green line. This position is associated
with the threshold η̂∗ in Algorithm 2. As a second step,
η̂∗ is used in the kNN method to make a confidence re-
gion, depicted as a purple square (this is □γ from (9)). If
the square is fully below the claimed curve T (0), a viola-

tion is detected (Figure 5) and if not, then no violation is
detected (Figures 2 and 3). As we can see, detecting vio-
lations requires n2 to be large enough, especially when
T (0) and T are close to each other.
For the incorrect T (0)-DP claims, we have done the fol-
lowing: For the Gaussian case (Figure 5), we have used a
trade-off curve with parameter µ = 0.5 instead of the true
µ= 1. For DP-SGD, we have used the trade-off curve cor-
responding to τ = 5 instead of the true τ = 10 iterations
(Figure 5).
Implementation Details The implementation is done
using python and R. 7. For the simulations, we have
used a local device and a server. All runtimes were col-
lected on a local device with an Intel Core i5-1135G7
processor (2.40 GHz), 16 GB of memory, and running
Ubuntu 22.04.5, averaged over 10 simulations. Thus, we
demonstrate reasonable runtimes even on a standard per-
sonal computer (see Appendix B.4). Additionally, we
used a server with four AMD EPYC 7763 64-Core (3.5
GHz) processors and 2 TB of memory running Ubuntu
22.04.4 for repetitive simulations. For python, we have
used Python 3.10.12 and the libraries "numpy" [23],
"scikit-learn" [40] and "scipy" [46]. For R, we used R
version 4.3.1 and the libraries "fdrtool" [28] and "Kerns-
mooth" [47].

7https://github.com/stoneboat/fdp-estimation

https://github.com/stoneboat/fdp-estimation


(a) n2 = 103,Ground Truth: No Violation;
Decision: "No Violation"✓

(b) n2 = 104, Ground truth: No Violation;
Decision: "No Violation"✓

(c) n2 = 105, Ground truth:No Violation;
Decision: "No Violation"✓

(d) n2 = 103, Ground truth: No Violation;
Decision: "No Violation"✓

(e) n2 = 104, Ground truth: No Violation;
Decision: "No Violation"✓

(f) n2 = 105, Ground truth: No Violation;
Decision: "No Violation"✓

Figure 4: Auditing a correct Mechanism: Claimed curve T (0) = TGauss (a,b,c) and T (0) = TSGD (d,e,f). We depict the
critical vertical line (obtained with step 3 in Algorithm 2) with intercept (α̂(η̂∗), β̂(η̂∗)), the k-NN point estimator ●
(α̃(η̂∗), β̃(η̂∗)) and the confidence region □. The sample size for the KDE is n1 = 104 and the confidence parameter is
γ = 0.05.

6.3 Interpretation of the results

For Goal 1 (estimation), we see in Figure 1 the fast de-
cay of the estimation error of T̂h for the optimal trade-
off curve. The estimation error decays quickly in n1, re-
gardless of whether there are plateau values in the sense
of Assumption 1 (e.g. Laplace Mechanism) or not (e.g.
Gaussian Mechanism). These quantitative results are sup-
plemented by the visualizations in Figures 2–3, where we
depict the largest distance of T̂h and T in 1000 simulation
runs (captured by the red band). Even for the modest
sample size of n1 = 103, this band is fairly tight and for
n1 = 105 the estimation error is almost too minute to plot.
We find this convergence astonishingly fast. It may be
partly explained by the estimator T̂h being structurally
similar to T - after all T̂h is also designed to be a trade-off
curve for an almost optimal LR test. The approximation
over the entire unit interval corresponds to the uniform
convergence guarantee in Theorem 4.2.

For Goal 2 (inference), we recall that a T (0)-DP vio-
lation is detected if the box □γ (purple) lies completely
below the postulated curve T (0) (blue). In Figure 4, we
consider the case of no violation where T = T (0), and
we expect not to detect a violation. This is indeed what
happens, since □γ intersects with the curve T (0) in all
considered cases. Interestingly, we observe that □γ has
a center close to α = 0 in the cases where no violation
occurs (such a behavior might give additional visual ev-
idence to users that no violation occurs). In Figure 5,
we display the case of faulty claims, where the privacy
breach is caused by a smaller variance for both mecha-
nisms under investigation. In accordance with Theorem
5.2, we expect a detection of a violation if n2 is large
enough. This is indeed what happens, at a sample size
of n2 = 104 for the Gaussian mechanism and at n2 = 104

for DP-SGD. Note that larger samples n2 are needed to
expose claims T (0) that are closer to the truth T (as for
DP-SGD in our example). For larger n2 the square □γ



(a) n2 = 103, Ground truth: Violation;
Decision: "No Violation"✗

(b) n2 = 104, Ground truth: Violation;
Decision: "Violation"✓

(c) n2 = 105, Ground truth: Violation;
Decision: "Violation"✓

(d) n2 = 103, Ground truth: Violation;
Decision: "No Violation"✗

(e) n2 = 104, Ground truth: Violation;
Decision: "Violation"✓

(f) n2 = 105, Ground truth: Violation;
Decision: "Violation"✓

Figure 5: Auditing a faulty Mechanism: Claimed Curve T (0) = TGauss (a,b,c) with µ = 0.5 and T (0) = TSGD (d,e,f)
with τ = 5. Both mechanisms assume stronger privacy (µ = 0.5 < 1 and τ = 5 < 10). We depict the critical vertical line
(obtained with step 3 in Algorithm 2) with intercept (α̂(η̂∗), β̂(η̂∗)), the k-NN point estimator ● (α̃(η̂∗), β̃(η̂∗)) and the
confidence region □. The sample size for KDE is n1 = 104 and the confidence parameter is γ = 0.05.

shrinks (see eq. (9)), leading to a higher resolution of the
auditor.

6.4 Real-World Example - CIFAR-10

We consider the CIFAR-10 dataset and train a small pri-
vate convolutional neural network using Opacus8 [50], a
standard library for training PyTorch models with DP.
Parameter settings: To simulate a pair of neighboring
databases, we take the same subset of size 1,000 of the
CIFAR-10 training data and replace the index 0 by differ-
ing images. In D, we use an all-black (all-zero) synthetic
image, while in group D′, we use an all-white (all-255)
image. Both are labeled arbitrarily as "airplane". We train
a 4-layer convolutional neural network on 1,000 images,
using a batch size of m = 512 (so in total 2 batches) for
1,10,15,20 and 25 epochs. We set the learning rate to

8https://github.com/pytorch/opacus

ρ = 0.1, the clipping parameter to 1.0 and use σ = 1.0
for the noise multiplier. We train the model 1,000 times
on D and D′ respectively, which took approximately 7
hours on a machine with 64 CPU cores while training in
parallel.
Score: For classical neural network structures, taking a
reasonable score function will be essential for proper au-
diting. In image classification, assigning the correct label
to the distinct image can yield reasonable results. In our
black-box setting, we tried different scores, namely the
logits, the cross-entropy (CE), with which the model is
trained, and the Kullback Leibler divergence (KL). It is
also crucial for our methodology that the score function
is indeed one dimensional, as the KDEs performance
heavily degrades for higher dimensions. In Figure 6 and
Figure 7, we depict the performance of estimation and
auditing after 25 epochs. For auditing we have used the
KL loss. In Figure 8, we illustrate how tight the lower
bounds are over various epochs, which yield different

https://github.com/pytorch/opacus


Figure 6: Algorithm 3 based on 1,000 models for
different loss functions. KL and CE are overlapping.

Figure 7: Algorithm 2 based on 1,000 models using the
KL. T (0) is a gaussian trade-off curve with µ = 0.15.

Decision: "Violation".

theoretical ε.
Interpretation of results: In Figure 6, we compare

several scoring functions for estimation. As expected,
CE performs best, since the model is trained to minimize
it. Nonetheless, related losses (e.g., KL) perform simi-
larly, underscoring the black-box nature of our method.
In principle, one could try multiple scores and select the
most promising. For auditing (see Figure 7), we consider
a misspecified training process, which can result from
incorrect noise calibration, excessive training epochs, or
misconfigured clipping. We also compare the empirical
lower bound ε̂ and theoretical ε obtained using Opacus.
We compute the empirical lower bound from the esti-
mated trade-off curve. Specifically, we use binary search
to find the Gaussian trade-off function that is closest to
our estimated curve in terms of ℓ1 distance. We then
leverage the known relationship between approximate
differential privacy and the Gaussian trade-off function
to convert this into a lower bound on ε. Similar to [38],
we see that the estimates are loose (see Figure 8). Conse-
quently, using the proposed method for auditing is only
possible for relatively strong privacy violations. More

Figure 8: Comparison of theoretical ε and empirical
lower bound for δ = 0.001.

accurate models, on the other hand, allow for tighter esti-
mates an better auditing, as already highlighted in [38].

7 Related Work

In this section, we provide a more detailed overview of
related works on auditing privacy guarantees and f-DP.
One avenue to assessing f -DP is to resort to a method
that provides estimates for the (ε,δ)-parameter of M and
to subsequently exploit the link between standard and f -
differential privacy to obtain an estimate of f . To be more
concrete, an algorithm that is (ε,δ)-DP is also fε,δ-DP
(see [19]) with trade-off function

fε,δ(α) := max
{

0,1−δ− eε
α,e−ε(1−δ−α)

}
. (12)

Thus, an estimator for (ε,δ) could, in principle, also pro-
vide an estimate for the trade-off curve f of M. This
approach is pursued in [30] with the help of a black-box
estimator of δ for fixed ε > 0. The maximum over the
fε,δ(·)-estimates then provides an approximation of the
trade-off curve of M. In contrast, our auditing procedure
is based on a single, direct estimate of the trade-off curve
of M, which makes our approach more expedient. In fact,
the runtimes reported for estimation of f in Appendix
B.4 confirm the efficacy of our approach. Moreover, from
an auditing perspective, results with regard to conver-
gence and reliability in [30] are only obtained for the
δ(ε)-estimate in the standard DP framework. Our work,
on the other hand, provides formal statistical guarantees
for the inference of the trade-off f .

Interestingly, the relation between standard and f -DP
can also be exploited in the opposite direction, that is, to
use estimates of the trade-off curve f to obtain estimates
for (ε,δ). This approach was first taken in [38] and subse-
quently adopted in other works [3, 4, 36] for the purpose
of auditing the privacy claims of DP-SGD, a cornerstone
of differentially private machine learning. Essentially,
these works aim at auditing DP by converting confidence
intervals for the type-I and type-II error of a distinguish-
ing attack into estimates of (ε,δ). And while previous



works [25, 43, 51] investigated the type-I and type-II er-
rors of distinguishing attacks in the standard DP model
to obtain such estimates, [38] was the first to exploit the
tight characterization of these errors in the Gaussian DP
model to obtain even tighter lower bounds for ε. Audit-
ing in [38] focuses on the white-box scenario, where the
auditor does not only have access to the training datasets
D and D′, but can also examine all intermediate model
updates that go into computing the corresponding final
models θ and θ′. This setting is further enhanced by al-
lowing the auditor to actively intervene in the training
process via self-crafted gradients or datasets that can be
inserted into the computations that yield the final model
outputs. “Opening the black-box” in this manner results
in tighter empirical estimates with fewer observations. A
black-box scenario discussed in [38] restricts the avail-
able information about the instance of DP-SGD under in-
vestigation. In this setting, the auditor’s access is limited
to the training datasets, the corresponding final models
and the specific loss function ℓ that the training algorithm
uses. Important parameters and features such as model
weights, noise scales, sampling rates, learning rates and
etc. remain hidden from the auditor. This scenario can
thus be considered “parameter black-box”. Though far
more restrictive than the above white-box setting, this sce-
nario is also specific to the DP-SGD mechanism, which
is characterized by the repeated use of Gaussian noise. It
therefore allows for auditing procedures that work with
the class of (subsampled) Gaussian trade-off curves as
in [38] or for distinguishing attacks such as LiRA [15],
which models the distribution of losses as Gaussians. Sub-
sequent works have adopted the approach in [38] to study
differentially private synthetic data generation [5], the
impact of shuffling on the privacy of DP-SGD [3], how
to obtain tighter audits in the black-box setting of [38]
with specially crafted worst-case parameters [4], or to
improve the analysis of distinguishing attacks [36]. In
our work, we further tighten the parameter black-box
scenario in [38] by avoiding assumptions that a specific
mechanism or family of trade-off curves are under inves-
tigation. Our approach can thus be deemed “mechanism
black-box” and is more aligned with a number of ex-
isting works that study other common variants of DP
through this lens [6, 13, 22, 29, 31, 34]. With no knowl-
edge of the underlying privacy mechanism, we cannot
assume normally distributed output data in this setting.
Hence, we developed tools like the perturbed LR test and
BayBox estimator, which do not require modeling distri-
butions as Gaussians and instead rely on mild regularity
assumptions (like smoothness) that are common in the
mechanism black-box setting [6, 22, 34]. Even though it
was designed for the more restrictive mechanism black-
box scenario, our method’s performance is similar to that
of the black-box approach from [38] in our experiments

on more realistic datasets. Moreover, our approach com-
pares favorably to other works that operate in the same
mechanism black-box setting. Here, the required number
of output samples to achieve reasonable levels of accu-
racy usually surpasses the maximum sample size n = 105

in our experiments on auditing [6, 22, 29] and can even
reach into the millions [13, 31, 34]. Thus, our estimation
and auditing methods are effective and flexible tools that
add to the existing literature on DP validation.

8 Conclusion and Future Work

In our work, we construct the first general-purpose f -
DP estimator and auditor for the mechanism black-box
setting, by combining techniques from statistics and clas-
sification theory. Our constructions enjoy not only formal
guarantees—convergence of our estimator and a tuneable
confidence region for our auditor—but also perform well
in experiments on standard algorithms from the DP liter-
ature. Our approach has limitations as well. In practice,
training even a single machine learning model can be
costly, making it impractical to sample thousands. This
is a problem in black-box settings, which require larger
samples sizes to achieve desired levels of accuracy.

However, our approach benefits from a plug-and-play
design, allowing these limitations to be mitigated by sub-
stituting alternative estimators – such as neural network-
based estimators – that might be more effective in high-
dimensional settings. Replacing the k-NN classifier does
not affect the theoretical guarantees provided in Theo-
rem 5.2, although it may increase the chance of failing to
reject a false claim if the alternative is not well chosen.
For the PLRT component, adopting a density estimator
that satisfies Assumption 2 preserves all guarantees estab-
lished in Theorem 4.2; otherwise, the guarantees may no
longer hold. In general, designing improved estimators
and classification tools for the black-box scenario is a
promising direction for future work.
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A Appendix

The appendix is dedicated to the technical details of our
results. The proofs can be found in an extended arxiv
version.

B Additional Experiments and Details

In this section, we provide some additional details on our
experiments and implementations.



Table 1: Overview of Notation Used in the Paper

Notation Description

D,D′ Pair of adjacent databases
M ( f -)DP Mechanism
Pr [],E [] Probability, Expectation
P,Q Output distributions of M(D),M(D′)
[P]

η
Mixture distribution with parameter η

p,q Probability densities of P,Q
α,β type-I & type-II errors

(typically of the Neyman-Pearson test)
α̂h, β̂h Estimated errors using KDE
α̃, β̃ Estimated errors using k-NN

(typically of the Neyman-Pearson test)
T optimal trade-off curve for p,q
T (0) trade-off curve that is audited
Th trade-off curve of perturbed LR test
T̂h estimated trade-off curve using KDE
η threshold in LR tests

vulnerability
η̂∗ estimated threshold of maximum

vulnerability
λ randomization parameter in

Neyman-Pearson test
h randomization parameter in

perturbed LR test
φ,φNNk,n generic classifier, k-NN classifier
φ∗ Bayes optimal classifier
γ,w(γ) confidence level & margin of error
□γ confidence region for

type-I-type-II errors
n,n1,n2 sample size parameters

B.1 Implementation details

Algorithm 3 gives a pseudo-code of our trade-off curve
estimator T̂h, presented in Section 4.

Next, we turn to the DP-SGD algorithm from our Ex-
periments section. The pseudocode for that algorithm
can be found in Algorithm 4 below. Note that we add
Gaussian noise Zt ∼N (0,σ2) to the parameter θt at each
iteration of DP-SGD. The operator ΠΘ projects the av-
eraged and perturbed gradient onto the space Θ and is
thus similar to clipping that gradient. We can derive the
exact trade-off function of this algorithm for our choice
of databases in (10) and our specifications from Section
6.1. More concretely, we first consider the distribution of
DP-SGD on D = (0, . . . ,0) and note that

θt+1 = θt −ρ(θt +Zt+1)

for each t ∈ {0, . . . ,τ}. Some calculations then yield that

Algorithm 3 PLRT: A Perturbed Likelihood Ratio Test
Algorithm for f -DP Estimation
Require: Black-box access to M; Threshold η > 0; Sample size n,

databases D,D′.

Ensure: An estimate (α̂(η), β̂(η)) of (α(η),β(η)) for tuple (P,Q),
where M(D) and M(D′) are distributed according to P,Q, respectively.
1: Choose perturbation parameter h.
2: Set the density estimation algorithm A . By default, use the KDE

algorithm.
3: function PLRT Estimator PLRTh

A (M,D,D′,η,n)
4: Compute the estimated densities p̂ and q̂ by running A on n

independent copys of M(D) and M(D′), respectively.
5: Compute α̂(η)←

∫
x∈[−h/2,h/2]

1
h
∫

q̂/p̂>η+x p̂

6: Compute β̂(η)← 1−
∫

x∈[−h/2,h/2]
1
h
∫

q̂/p̂>η+x q̂

7: Return (α̂(η), β̂(η))
8: end function

Θτ ∼N (0, σ̄2) with

σ̄
2 = ρ

2
σ

2 1− (1−ρ)2τ

1− (1−ρ)2 . (13)

Similarly, we have for D′ = (1,0, . . . ,0) that

θt+1 = (1−ρ)θt +ρZt+1

for each t ∈ {0, . . . ,τ}. Here, Zt is a Gaussian mixture
with

Zt ∼
1
2

N
(
0,σ2)+ 1

2
N
(

1
m
,σ2
)
.

We can then see that θτ = Z̃1 + · · ·+ Z̃τ where the Z̃t are
independent Gaussian mixtures with

Z̃t ∼
1
2

N
(

0,ρ2 (1−ρ)2(τ−t)
σ

2
)

+
1
2

N
(

ρ(1−ρ)τ−t

m
,ρ2 (1−ρ)2(τ−t)

σ
2
)
.

By defining

µI := ∑
t∈I

ρ(1−ρ)τ−t

m
(14)

and choosing σ̄ as in (13), we get that

θτ ∼ ∑
t⊂{1,...,τ}

1
2τ

N (µI , σ̄
2).

Having derived the distribution of M(D) and M(D′), we
take a look at the corresponding LR-test g and note that
it can be expressed as

g(x) =

{
1 x > c
0 x≤ c

for some threshold c. A few calculations then yield the
trade-off curve

TSGD(α) = ∑
I⊂{1,...,τ}

1
2τ

Φ

(
Φ
−1(1−α)− µI

σ̄

)
.



(a) n1 = 103 (b) n1 = 104 (c) n1 = 105

Figure 9: Estimation of the Laplace Trade-off curve TLap for varying sample sizes. Min- and Max Curve lower- and
upper bound the worst point-wise deviation from the true curve TLap over 1000 simulations.

(a) n1 = 103 (b) n1 = 104 (c) n1 = 105

Figure 10: Estimation of the Subsampling Trade-off curve TSub with the Gaussian mechanism for µ = 1 and varying
sample sizes. Min- and Max Curve lower- and upper bound the worst point-wise deviation from the true curve TSub over
1000 simulations.

Algorithm 4 DP-SGD Algorithm
Require: Dataset x = (x1, . . . ,xr), loss function ℓ(θ,x),

Parameters: initial state θ0, learning rate ρ, batch size m,
time horizon τ, noise scale σ, closed and convex space Θ.

Ensure: Final parameter θτ.
1: for t = 1, . . . ,τ do
2: Subsampling: Take a uniformly random subsample It ⊆
{1, . . . ,r} with batch size m.

3: for i ∈ It do
4: Compute gradient: v(i)t ← ∇θℓ(θt ,xi)
5: end for
6: Average, perturb, and descend:

θt+1← θt −ρ ΠΘ

(
1
m ∑

i∈It

v(i)t +Zt

)
7: end for
8: Output: θτ

B.2 Additional Algorithms

We test our estimation procedure on the Laplace and
Subsampling algorithm, which often serve as building
blocks in more sophisticated privacy mechanisms. We
select the same setting for our experiments as in Section
6 and choose D and D′ as in (10).

Laplace mechanism. We consider the summary statistic

S(x) = ∑
10
i=1 xi and the mechanism

M(x) := S(x)+Y ,

where Y ∼ Lap(0,σ). The statistic S(x) is privatized by
the random noise Y if the scale parameter σ > 0 of the
Laplace distribution is chosen appropriately. We choose
σ = 1 for our experiments and observe that the optimal
trade-off curve is given by

TLap(α) =


1− eα, α < e−1/2 ,

e−1/4α, e−1/2≤ α≤ 1/2 ,

e−1(1−α), α > 1/2.

We point the interested reader to [19] for more details on
how to derive TLap.

Subsampling algorithm. Random subsampling provides
an effective way to enhance the privacy of a DP mecha-
nism M. We only provide a rough outline here and refer
for details to [19]. In simple words, we choose an integer
m with 1≤ m < r, where r is the size of the database D.
We then draw a random subsample of size m from D, giv-
ing us the smaller database D̄ of size m. The mechanism
M is then applied to D̄ instead of D, providing users with
an additional layer of privacy (if a user is not part of D̄,
their privacy cannot be compromised). The amplifying



effect that subsampling has on privacy is visible in the
optimal trade-off curve: If M has the trade-off curve T ,
then M(D̄) has the trade-off curve

T̄ (α) =
m
r

T (α)+
r−m

r
(1−α),

which is strictly more private than T for any m < r. A
minor technical peculiarity of subsampling is that the
resulting curve T̄ is not necessarily symmetric, even if
T is (see [19] for details on the symmetry of trade-off
functions). Trade-off curves are usually considered to
be symmetric and one can symmetrize T̄ by applying a
symmetrizing operator C with

C[T ](x) =


T (x), x ∈ [0,x∗]
x∗+T (x∗)− x, x ∈ [x∗,T (x∗)]
T−1(x), x ∈ [T (x∗),1],

where x∗ is the unique fix-point of T with T (x∗) = x∗

(for more details we refer to [19]). Another mathe-
matical representation of C that we use in our code
is C(T ) = min{T,T−1}∗∗, where the index ∗∗ signi-
fies double convex conjugation. We incorporate this
operation into our estimation procedure by simply
applying C to our estimate of the trade-off function T .
For our experiments involving subsampling, we use the
Gaussian mechanism for M (with σ = 1) and obtain the
subsampled version M′ by fixing the parameter m = 5
(recall that r = 10).

Similar to the experiments section, we construct figures
that upper and lower bound the worst case errors for the
Laplace mechanism and the Subsampling algorithm over
1000 simulation runs. We can see again that the error of
the estimator T̂h shrinks significantly, as n1 grows.

B.3 Comparison to credible intervals
In this work, we consider the construction of confidence
bounds as common in frequentist statistics. If γ is set to
1% in Theorem 5.2, this means that (on average) in 100
audits of a correct algorithm only at most one violation
will be (erroneously) detected. These kinds of guarantees
are the gold standard in empirical sciences and we be-
lieve they are the guarantees real users would care about.
It is worth noting that there exist other types of statistical
results, including credible results from Bayesian statis-
tics such as by [51], who work on approximate DP. It
is important to point out that Bayesian results are very
different from frequentist approaches. One difference is
their performance, because credible intervals do not gen-
erally provide the same bounds on false detection rates
as frequentist results. We illustrate this point with a mini-
mal simulation. The aim is to make a confidence/credible

interval for the bias of a coin. We simulate n = 500 coin
flips per trial for k = 105 trials, with varying bias (p).
Frequentist confidence intervals use the sample propor-
tion and normal approximation, while Bayesian credible
intervals rely on a standard Beta prior (α = 10,β = 10)
updated with observed data. Coverage is assessed by
checking if intervals contain the true p. The targeted
confidence/credible is 1− γ with γ = 0.1 and results are
displayed in Figure 11. As we can see, frequentist inter-
vals hold repeated-sampling guarantees, while Bayesian
credible intervals depend on priors and lack such guaran-
tees under repeated sampling.

Figure 11: Empirical coverage probabilities for frequen-
tist and Bayesian intervals based on 105 simulation runs.

B.4 Additional simulations
We present some results that complement the main find-
ings in our experiment section. We use the same setup
as described in our experiments and investigate a faulty
implementation of the Gaussian mechanism. We study
two things: First, the impact of the parameter γ, where
we vary γ between very small and relatively large values.
As we can see, smaller values of γ lead to larger boxes □γ

which make it harder for the auditor to detect violations.
Secondly, we consider the impact of the sample size n1
ranging from the very modest value of 102 up to 104.
We see that the sample size has very little impact on the
performance of the procedure and it already works well
for fairly small samples n1 (n2 has a greater impact, as
we have seen in our experiments). Finally, we have also
reported the runtimes for different mechanism in Table 2
and Table 3.

B.5 Proofs for Goal 1 (Estimation)
Consequences of Theorem 4.2 The main result in Sec-
tion 4 is Theorem 4.2. Lemma 4.1 can be seen as a special
case, putting p̂ = p, q̂ = q . Then, Assumption 2 is met
for the constant sequence an = 0. It follows by this con-
struction that T̂h = Th, is non-random and only depends



(a) γ = 0.001, Ground truth: Violation;
Decision: "Violation"✓

(b) γ = 0.01, Ground truth: Violation;
Decision: "Violation"✓

(c) γ = 0.1, Ground truth: Violation;
Decision: "Violation"✓

(d) n1 = 102, Ground truth: Violation;
Decision: "Violation"✓

(e) n1 = 103, Ground truth: Violation;
Decision: "Violation"✓

(f) n1 = 104, Ground truth: Violation;
Decision: "Violation"✓

Figure 12: Auditing a faulty Mechanism: Claimed Curve T (0) = TGauss with µ = 0.2, but in reality µ = 1. For (a),(b),(c)
we consider n1 = 104, and for (d),(e),(f) we have considered various sample sizes for the KDEs, respectively. Throughout
the simulations we keep n2 = 104 fixed, and confidence intervals in (d), (e), and (f) are computed with level γ = 0.05

Algorithm Runtime in seconds
Gaussian mechanism 26.3
Laplace mechanism 30.51
Subsampling mechanism 27.82
DP-SGD 61.1

Table 2: Average runtimes of Algorithm 3 for n1 = 105

over 10 runs to obtain the full trade-off curve T .

on h. Any choice of h ↓ 0 is permissible and Lemma 4.1
follows from the Theorem. Proposition 4.3 too is a direct

Algorithm Runtime in seconds
Gaussian mechanism 62.63
Laplace mechanism 67.04
Subsampling mechanism 66.98
DP-SGD 114.86

Table 3: Average runtimes of Algorithm 1 for n2 = 106

over 5 runs to obtain one point of the trade-off curve T
with confidence region.

consequence of Theorem 4.2. To see this, we notice that

T0(α̂h(η̂
∗))−T (α̂h(η̂

∗))

=T0(α̂h(η̂
∗))− T̂h(α̂h(η̂

∗))+oP(1)

= sup
α∈[0,1]

{T0(α)− T̂h(α)}+oP(1)

= sup
α∈[0,1]

{T0(α)−T (α)}+oP(1).



In the first and last step, we have used the uniform con-
vergence of Theorem 4.2, which allows us to replace T
by T̂h while only incurring an oP(1) error. In the sec-
ond step, we have used the definition of α̂h(η̂

∗) as the
maximizer of the difference between T0 and T̂h. Thus
Proposition 4.3 follows. We now turn to the proof of the
theorem. The proof is presented for densities on the real
line. Extensions to Rd are straightforward and therefore
not discussed.
Preliminaries Recall that a complete separable metric
space is Polish. The real numbers, equipped with the ab-
solute value distance is a Polish space. The continuous
functions C0 on the real line that vanish at ±∞, i.e. that
satisfy

lim
x→∞

f (x) = lim
x→∞

f (−x) = 0 (15)

is a Polish space if equipped with the supremum norm

∥ f∥ := sup
x∈R
| f (x)|.

The product of complete, separable metric spaces is com-
plete and separable if equipped with the maximum metric,
i.e. the space C0×C0×R×R is Polish. Now, the vector

(p̂, q̂,∥p̂− p∥∞/an,∥q̂−q∥∞/an)

lives on this space (for each n) and convergences to the
limit (p,q,0,0) in probability (see Assumption 2). Ac-
cordingly we can use Skorohod’s theorem to find a prob-
ability space, where this convergence is a.s.

(p̂, q̂,∥ p̂− p∥∞/an,∥q̂−q∥∞/an)→ (p,q,0,0) a.s.

It is a direct consequence that on this space it holds a.s.

∥p̂− p∥= o(an), ∥q̂−q∥= o(an).

In the following, we will work on this modified probabil-
ity space and exploit the a.s. convergence. We will fix the
outcome and regard p̂, q̂ as sequences of deterministic
functions, converging to their respective limits at a rate
o(an).
Next, it suffices to show the desired result pointwise for
any α. This reduction is well-known. For a sequence of
continuous, monotonically decreasing functions ( fn)n liv-
ing on the unit interval [0,1], pointwise convergence to a
continuous, monotonically decreasing limit f on [0,1] im-
plies uniform convergence. The same argument lies at the
heart of the proof of the famous Glivenko-Cantelli Theo-
rem (see [45]). We now want to demonstrate the conver-
gence |T̂ (α)−T (α)|= o(1) pointwise. More precisely,
we will demonstrate that for the pair (α,T (α)), there ex-
ist values of η such that α̂h(η)→ α and β̂h(η)→ T (α).
Since the proofs of both convergence results work ex-
actly in the same way, we restrict ourselves in this proof

to show that α̂h(η)→ α. So let us consider a fixed but
arbitrary value of α ∈ [0,1] and begin the proof.
Case 1: We first consider the case where η ≥ 0 (the
threshold in the optimal LR test) is such that the set
{q/p = η} has 0 mass. In this case, the coin toss with
probability λ can be ignored (it happens with probability
0) and we can define the type-I-error α of the Neyman-
Pearson test as

α =
∫

p · I{q/p > η}.

In this case, we want to show that∫
x∈[−h/2,h/2]

1
h

∫
q̂/p̂>η+x

p̂

=
∫ ∫

x∈[−h/2,h/2]
p̂

1
h
I{q̂/p̂ > η+ x}=:

∫
ĝ

→
∫

q/p>η

p =
∫

p · I{q/p > η}=:
∫

g.

Here we have defined the functions g, ĝ in the obvious
way. We will now show ĝ converges pointwise to g. For
this purpose consider the interval [−K,K] for a large
enough K, such that∫

[−K,K]c
p < ζ and

∫
[−K,K]c

q < ζ

for a number ζ that we can make arbitrarily small. Given
the uniform convergence of the density estimators on the
interval [−K,K] it holds for all n sufficiently large that
also ∫

[−K,K]c
p̂ < ζ and

∫
[−K,K]c

q̂ < ζ.

Accordingly we have∣∣∣∣∫ ĝ−g
∣∣∣∣≤ 2ζ+

∣∣∣∣∫
[−K,K]

ĝ−g
∣∣∣∣.

We then focus on the second term on the right and fix
some argument y∈ [−K,K]. It holds that either q(y)/p(y)
is bigger or smaller than η (equality occurs only on a null-
set and can therefore be neglected). Let us focus on the
case where q(y)/p(y) > η. If this is so, then it follows
that in a small environment, say for y′ ∈ [y− ζ′,y+ ζ′]
we also have q(y′)/p(y′) > η. For all large enough n
it follows that h/2 < ζ′. Then, it is easy to see that also
q̂(y′)/p̂(y′)> η for all y′ ∈ [y−ζ′,y+ζ′] simultaneously,
for all sufficiently large n. If this is the case, the indicators
in the definition of ĝ,g become 1 and ĝ = p̂, g = p. So,
we have pointwise ĝ(y) = p̂(y)→ p(y) = g(y). Since
ĝ is also bounded for all sufficiently large n (since the
integral over the indicator is bounded and the sequence



p̂ is uniformly convergent to the bounded function p) we
obtain by the theorem of dominated convergence that∣∣∣∣∫

[−K,K]
ĝ−g

∣∣∣∣→ 0.

This shows that

limsup
n
|α̂h(η)−α|= O(ζ).

Finally, letting ζ ↓ 0 in a second limit shows the desired
approximation in this case.
Case 2: Next, we consider the case where the set {q/p =
η} has positive mass for some η > 0.10 This means that
the coin-flip in the definition of the optimal LR test plays
a role and we set the probability λ to some value in [0,1].
We then consider as estimator the value α̂(η−bh) for a
value b that we will determine below. Let us, for ease of
notation, define the probability

L :=
∫

q/p=η

p

and appreciate that then

α = α
′+O(ζ)+λL. (16)

We explain the decomposition: In equation (16), α′ is
the rejection probability of the LR test defined by the
decision to reject whenever q(y)/p(y)> η+ζ′′ for some
small number ζ′′. For all small enough values of ζ′′ the
threshold η+ ζ′′ is not a plateau value (there are only
finitely many of them; see Assumption 1). It follows that

α
′ =

∫
p · I{q/p > η+ζ

′′}.

Next, for any fixed constant ζ> 0 we can choose ζ′′ small
enough such that∫

p · I{η < q/p≤ η+ζ
′′}< ζ. (17)

This explains the second term on the right of equation
(16). The third term corresponds to the probability of
rejecting whenever q/p = η (this probability is L) times
the probability that the coin shows heads (reject) with
probability λ.
Now, using these definitions, we decompose the set

{q̂/p̂ > η−bh+ x}
={η+ζ

′′ ≥ q̂/ p̂ > η−bh+ x}∪{q̂/p̂ > η+ζ
′′}.

This yields the decomposition

α̂h(η−bh) = α̂h(η+ζ
′′) (18)

+
∫ ∫

x∈[−h/2,h/2]
p̂

1
h
I{η+ζ

′′ ≥ q̂/ p̂ > η−bh+ x}.

10We omit the simpler case where η = 0 and L = 0 anyways.

Now, by part 1 of this proof we have

|α̂h(η+ζ
′′)−α

′|= o(1).

Next, we study the integral on the right side of eq. (18)
and for this purpose define the objects

g̃ :=
∫

x∈[−h/2,h/2]
p̂

1
h
I{A1},

f̃ :=
∫

x∈[−h/2,h/2]
p̂

1
h
I{A2}.

A1 :={η+ζ
′′ ≥ q̂/ p̂ > η−bh+ x,q/p = η},

A2 :={η+ζ
′′ ≥ q̂/ p̂ > η−bh+ x,q/p ̸= η}.

Now, let us consider a value y where q(y)/p(y) ̸= η and
for sake of argument let us focus on the (more difficult)
case q(y)/p(y) > η. If q(y)/p(y) > η+ ζ′′, it follows
that eventually p̂(y)/q̂(y)> η+ζ′′ and hence f̃ (y) = 0.
The case where q(y)/p(y) = η + ζ′′ is a null-set and
hence negligible (it is not a plateau value). The case
where q(y)/p(y) ∈ (η,η+ ζ′′) implies that eventually
p̂(y)/q̂(y) ∈ (η,η+η′′) and thus eventually f̃ (y) = p̂(y)
which converges pointwise to p. Thus, we have by domi-
nated convergence that∫

f̃ →
∫

p · I{η < q/p≤ η+ζ
′′}< ζ.

The fact that the integral is bounded by ζ was established
in eq. (17). This means that for all n large enough we
have ∫

f̃ < ζ.

Now, let us focus on a value of y where q(y)/p(y) = η.
In this case it follows that q(y), p(y)> 0 and we have

q̂(y)
p̂(y)

=
q(y)
p(y)

+o(an) = η+o(an).

Notice that we can rewrite g̃ as∫
x∈[−1/2,1/2]

p̂ I{η+ζ
′′ ≥ q̂/ p̂ > η−bh+hx,q/p = η}.

Now, for any x > b it follows that the indicator will even-
tually be 0, because

q̂/p̂ = η+o(an)<< η+h(x−b)

(because an = o(h) by assumption in the Theorem). By
similar reasoning the indicator is 1 if x < b. This means
that g̃ converges for any fixed y with q(y)/p(y) = η to
p(y) · (1/2+b) and using majorized convergence yields∫

g̃→ (1/2+b)
∫

q/p=η

p = (1/2+b)L.



Now, we can choose b = λ−1/2 to get that the right side
is equal to λL. Putting these considerations together, we
have shown that

limsup
n
|α− α̂h(η− [λ−1/2]h)|= O(ζ).

Taking the limit ζ ↓ 0 afterwards yields the desired result.

B.6 Proofs for Goal 2 (Auditing)
Before we proceed to the proofs, we state a simple but
useful consequence of the Neyman-Pearson Lemma.

Corollary B.1 Let set Sη = {x : p(x)/q(x) ≤ η}. For
α ∈ [0,1], if there exists η such that Pr

X∼P
[X ∈ Sη] = α,

then it holds that

β(α) = 1− Pr
X∼Q

[X ∈ Sη] .

As a next step, we prove a theoretical result connecting
the output of the BayBox estimator for the theoretical (in
practice unknown) Bayes classifier φ∗.

Lemma B.2 Let η, (α(η),β(η)), (α̃(η), β̃(η)), and φ be
as defined in Algorithm 1. Set φ to the Bayes optimal clas-
sifier φ∗ for the corresponding Bayesian classification
problem. Then, with probability 1− γ,

|α̃(η)−α(η)| ≤

√
1

2n
ln

4
γ∣∣∣β̃(η)−β(η)

∣∣∣≤√ 1
2n

ln
4
γ
.

Proof. [Proof of Lemma B.2] We prove the statement
that |α̃(η)−α(η)| ≤

√
1
2n ln 4

γ
if η≥ 1 with probability

≥ 1− γ/2. The proof of the second statement follows a
similar approach. We begin with a few definitions. Let
the observation set be defined as

O := Supp(P)∪Supp(Q)∪{⊥},

i.e. the range of observation. Define the indicator function
ISη

: O 7→ {0,1}, which takes as input an observation x
from the observation set O, outputting 1 if x ∈ Sη and 0
otherwise. Also, recall the definition of the set Sη = {x :
p(x)/q(x)≤ η} as the set of all observation x ∈ O where
p(x) is less than or equal to ηq(x) (as before p,q are the
densities of distributions P,Q).

We first show that ISη
is exactly the Bayes classi-

fier φ∗ for the Bayesian binary classification problem
P
[
[P]

η
,Q
]
. We prove this by showing for every x ∈ O,

φ∗(x) = ISη
(x). Therefore, consider the tuple of random

variable (X ,Y ) ∼ P
[
[P]

η
,Q
]
. Then, for every observa-

tion x ∈ O \{⊥}, we have

φ
∗(x) = argmax

{0,1}
{Pr [Y = 0|X = x] ,Pr [Y = 1|X = x]}

(by Bayes classifier φ∗’s construction)

= argmax
{0,1}

{Pr [Y = 0,X = x] ,Pr [Y = 1,X = x]}

(by Bayes Theorem)

= argmax
{0,1}

{ 1
η

p(x),q(x)}

= ISη
(x). (by ISη

’s definition)

For an observation x = ⊥, it is easy to check φ∗(x) =
ISη

(x) = 0, as q(x) = 0.
Then, we also observe that

α(η) (19)
= Pr

X∼P
[X ∈ Sη] (By Corollary B.1)

= Pr
X∼P

[
ISη

(X) = 1
]

= Pr
X∼P

[φ∗(X) = 1] (φ∗ = ISη
)

= EX∼P [φ
∗(X)]

Recall that in algorithm 1, BayBox estimatior BBφ∗

computes the empirical mean of φ∗(X), i.e., α̃(η), as the
estimate of α(η). By Hoeffding’s Inequality, we finally
conclude that

Pr

[
|α̃(η)−α(η)|>

√
1
2n

ln
4
γ

]

= Pr

[∣∣∣∣∣1n n

∑
i=1

Zi−E

[
1
n

n

∑
i=1

Zi

]∣∣∣∣∣>
√

1
2n

ln
4
γ

]
(Zi

def
= φ∗(Xi),Xi

i.i.d.∼ P)

≤ γ/2.

□

Remark 3 For any classifier φ that is used as input of
the BayBox algorithm, the output (α̃(η), β̃(η)) will have
a mean point (Eα̃(η),Eβ̃(η))) on or above the optimal
trade-off curve. The reason is that (α̃(η), β̃(η)) are the
empirical type-I and type-II-errors of the test that rejects
whenever an output is classified as belonging to D′. The
means Eα̃(η),Eβ̃(η) correspond to the population ver-
sion of the errors which by construction of the optimal
trade-off curve are on or above it (no test has a better
combination than the Neyman-Pearson test which demar-
cates the curve exactly).

Proof. [Proof of Theorem 5.1] The proof of part 1)
of the theorem follows in exact analogy to the proof



of Lemma B.6 and we do not repeat it here. Now, we
turn to the proof of part 2). Again we restrict our-
selves to proving the statement about the type-I-errors

|α̃(η)−α(η)| ≤
√

1
2n ln 4

γ
+

√
144c2

d
n ln 4

γ
, and the state-

ment on type-II-errors follows by a similar approach.
With probability at least 1− γ/2, we have

|α̃(η)−α(η)|

=

∣∣∣∣∣1n n

∑
i=1

φ
NN
k,n(Xi)−E

[
1
n

n

∑
i=1

φ
∗(Xi)

]∣∣∣∣∣ (Xi
i.i.d.∼ P)

=

∣∣∣∣∣1n n

∑
i=1

φ
NN
k,n(Xi)−E [φ∗(X)]

∣∣∣∣∣ (X ∼ P)

≤

∣∣∣∣∣1n n

∑
i=1

φ
NN
k,n(Xi)−E

[
φ
NN
k,n(X)

]∣∣∣∣∣+ ∣∣E[φNNk,n(X)
]
−E [φ∗(X)]

∣∣
≤

√
1

2n
ln

4
γ
+
∣∣E[φNNk,n(X)

]
−E [φ∗(X)]

∣∣
(by Hoeffding’s Inequality)

=

√
1

2n
ln

4
γ
+
∣∣Pr
[
φ
NN
k,n(X) = 1

]
−Pr [φ∗(X) = 1]

∣∣
=

√
1

2n
ln

4
γ
+
∣∣Pr
[
φ
NN
k,n(X) ̸= 0

]
−Pr [φ∗(X) ̸= 0]

∣∣
≤

√
1

2n
ln

4
γ
+2|R(φNNk,n)−R(φ∗)|

≤

√
1

2n
ln

4
γ
+12

√
2c2

d
n

ln
4
γ
. (by Theorem 2.2)

We note that the first equality follows the idea in the
proof of Lemma B.2, by just replacing the Bayes classi-
fier with the concrete k-NN classifier. □
Proof. [Proof of Theorem 5.2] To enhance the clarity
of this proof, we will additionally assume that the curve
T (0) is strictly decaying. We first need to understand
the interpretation of lines 6 and 7 of the algorithm. The
algorithm detects a violation, if

i∗ > α̃(η̂∗)+w(γ),

where i∗ solves the equation T (0)(i∗) = β̃(η̂∗)+w(γ). We
apply T (0) on both sides, which gives us the detection
condition

β̃(η̂∗)+w(γ)< T (0)(α̃(η̂∗)+w(γ)). (20)

Geometrically this means that the point (α̃(η̂∗) +
w(γ), β̃(η̂∗) +w(γ)) is below the curve T (0) and since
T (0) is a trade-off curve, it follows that the entire box □γ

is below T (0). Conversely, if the detection condition is

violated, we have

β̃(η̂∗)+w(γ)≥ T (0)(α̃(η̂∗)+w(γ)) (21)

and the upper right edge point of the box □γ is on or
above T (0).
Now, suppose there was no violation (part 1) of the theo-
rem). Then, any point on or above T is also on or above
T (0). The point (Eα̃(η),Eβ̃(η)) is on or above T and
thus on or above T (0). Now, according to Theorem 5.1 it
holds with probability ≥ 1− γ that the following event
occurs

E = {(Eα̃(η),Eβ̃(η)) ∈□γ}
Conditional on that event the upper right edge point of
□γ, namely (α̃(η̂∗)+w(γ), β̃(η̂∗)+w(γ)) is also above
T . It is hence above T (0) and satisfies condition (21) and
no privacy violation is detected.
Now, in part 2), suppose that there exists a privacy vi-

olation. The trade-off function is strictly convex and it
is not hard to see that this implies that it equals the set
{(α(η),β(η) : η≥ 0} in this case (the constant λ in the
Neyman-Pearson test can be set to 0 everywhere). We
also define the maximum violation

v∗ = sup
α∈[0,1]

[
T (0)(α)−T (α)

]
and the set of thresholds

Ψ :=
{

η≥ 0 : T (0)(α(η))−T (α(η))≥ v∗/2
}
.

It holds by the proof of Theorem 4.2 case 1) that

sup
η

|α̂h(η)−α(η)| P→ 0, as n1→ ∞.

In particular, it follows that

Pr[η̂∗ ∈Ψ] = 1− rn1 ,

where rn1 → 0 as n1→ ∞. If the above statement were
false, it would follow on an event with asymptotically
positive probability that

T (0)(α(η̂∗))−T (α(η̂∗))≤ (1/2)v∗

leading to a contradiction with Proposition 4.3. Now, we
condition on the event {η̂∗ ∈Ψ} and pass the parameter
to the BayBox estimator, which returns the estimator
pair (α̃(η̂∗), β̃(η̂∗)). Now, keeping n1 fixed and letting
n2→ ∞ it follows that (part 2) of Theorem 5.1)

α̃(η̂∗)+w(γ) P→ α(η̂∗), β̃(η̂∗)+w(γ)→ β(η̂∗).

Given the continuity of the function T (0) (every trade-off
function is continuous) it follows that conditionally on Ψ

T (0)(α̃(η̂∗)+w(γ))→ T (0)(α(η̂∗))≥ T (α(η̂∗)+ v∗/2
=β(η̂∗)+ν

∗/2 > β(η̂∗)



and the detection condition in (20) is asymptotically ful-
filled as n2→ ∞. Thus, we have

lim
n2→∞

Pr[A = "Violation"|{η̂∗ ∈Ψ}] = 1

and hence

liminf
n2→∞

Pr[A = "Violation"]≥ 1− rn1 .

Taking the limit n1→ ∞ we have rn1 → 0 and the result
follows. □
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