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Abstract. A private information retrieval (PIR) protocol allows a client
to fetch any entry from single or multiple servers who hold a public
database (of size n) while ensuring no server learns any information
about the client’s query. Initial works on PIR were focused on reduc-
ing the communication complexity of PIR schemes. However, standard
PIR protocols are often impractical to use in applications involving large
databases, due to its inherent large server-side computation complexity,
that’s at least linear in the database size. Hence, a line of research has
focused on considering alternative PIR models that can achieve improved
server complexity.

The model of private information retrieval with client prepossessing has
received a lot of interest beginning with the work due to Corrigan-Gibbs
and Kogan (Eurocrypt 2020). In this model, the client interacts with
two servers in an offline phase and it stores a local state, which it uses
in the online phase to perform PIR queries. Constructions in this model
achieve online client/server computation and bandwidth that’s sublinear
in the database size, at the cost of a one-time expensive offline phase.
Till date all known constructions in this model are based on symmet-
ric key primitives or on stronger public key assumptions like Decisional
Diffie-Hellman (DDH) and Learning with Error (LWE). This work initi-
ates the study of unconditional PIR with client prepossessing - where we
avoid using any cryptographic assumptions. We present a new PIR pro-
tocol for 2t servers (where t ∈ [2, log2 n/2]) with threshold 1, where client

and server online computation is Õ(
√
n)1 - matching the computation

costs of other works based on cryptographic assumptions. The client stor-
age and online communication complexity are Õ(n0.5+1/2t) and Õ(n1/2)
respectively. Compared to previous works our PIR with client prepro-
cessing protocol also has a very concretely efficient client/server online
computation phase - which is dominated by xor operations, compared to
cryptographic operations that are orders of magnitude slower. As a build-
ing block for our construction, we introduce a new information-theoretic
primitive called privately multi-puncturable random set (PMPRS), which
might be of independent interest. This new primitive can be viewed as
as a generalization of privately puncturable pseudo-random set, which
is the key cryptographic building block used in previous works on PIR
with client preprocessing.

1 the Õ(.) notation hides poly log factors



1 Introduction

First introduced by Chor et al. [CKGS98], a private information retrieval (PIR)
protocol allows a client to fetch any entry of a public database held by a single
or multiple non-colluding servers. A line of works beginning with Chor et al.
[CKGS98] have focused on reducing the communication complexity of PIR in
the single and multiple server cases under various cryptographic assumptions
[CMS99,BI01,BIKR02,Yek08,Efr09,DG16]. PIR has been employed as a useful
building block for many cryptographic applications, including private contact
discovery [DRRT18,HSW23], anonymous communication [MOT+11], and safe
browsing [KCG21].

Standard PIR protocols however are generally inefficient when they used
for applications involving very large databases. One major factor contributing
to the inefficiency of all known PIR schemes is the linear server computation
complexity per query. This inefficiency is inherent in the standard PIR model
in both the single and multi-server case and both the statistical and compu-
tational setting [BIM00]. Hence, a line of research has focused on considering
alternative PIR models, that allow for sublinear server complexity per query,
either in the worst case or in an amortized sense. These includes models focused
on batch PIR queries [BIM00,SWP09,IKOS04,LG15,HHG13,AS16,ACLS18] and
PIR with pre-processing [BIM00,LP23,SACM21,ZPSZ23,HHCG+23,CGHK22].
Specifically, the PIR with client pre-processing model has garnered a lot of at-
tention beginning with a work by Corrigan-Gibbs and Kogan [CGK20].

PIR with client preprocessing In this 2-server PIR model introduced by
Corrigan-Gibbs and Kogan [CGK20], the client interacts with two non-colluding
servers during an offline phase where the servers receive as input a database of
size n. At the end of this phase the client maintains some sublinear sized state and
there’s no state stored on the server side. This offline phase is often computation-
ally expensive - with each server doing linear computation in the database size. In
the online phase, the client can make an unbounded number of PIR queries using
its stored state - such that both online communication and online client/server
computation are sublinear in the database size! In [CGK20] the authors were

able to construct a PIR protocol in this model with Õ(n1/2) online client/server

computation and Õ (n1/2) client state size. Furthermore, in the online phase, the

client query size is Õ (n1/2) and the server response is O(1) - leading to online

communication complexity of Õ(n1/2). Their original 2-server construction is
based on one-way functions (OWF), but since then its also been extended to the
single server model and its been improved using other cryptographic primitives
[LP23,GZS24,SACM21,ZPSZ23,MSR23,FLLP24,HHCG+23,CGHK22]. The key
building cryptographic building block used in [CGK20] and follow-up works is
some variant of privately puncturable pseudo-rando set, which we describe in
greater detail next. We refer to all PIR preprocessing protocols that are based on
this primitive to be designed in the Corrigan-Gibbs and Kogan (CGK) paradigm.
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Corrigan-Gibbs and Kogan (CGK) Paradigm (based on privately punc-
turable pseudo-random sets) A privately puncturable pseudo-random set
consists of four algorithms (Gen, Set,Test,Punc). Gen is a randomized function
that outputs a short key k corresponding to a pseudo-random set. Function
Set(k) outputs the corresponding pseudo-random set, which has distribution
computationally indistinguishable from a random set of size

√
n from domain

[n] = {0, 1, . . . , n − 1}. Function Test(k, x) outputs a bit checking whether x
?
∈

Set(k). Punc(k, x) outputs a punctured key k′, such that Set(k′) = Set(k) \ {x}
and the key k′ hides x. The first construction for this primitive in [CGK20] was
based on pseudo-random permutations - where the key and punctured key have
sizes κ and Õ(

√
n) respectively, where κ is the private key security parameter.

The computation complexity of Test and Set algorithms are Õ(1) and Õ(
√
n)

respectively.
A very rough sketch of the PIR with client preprocesisng scheme of [CGK20]

is as follows: the client generates T = Õ(
√
n) privately puncturable pseudo-

random set keys (k1, k2, . . . , kT ) and it sends them to the first server in the offline
phase. This server responds back with hint bits hi = ⊕j∈Set(ki)DB[j] where DB
is a database of size n held by both parties. The client stores these T keys and
the corresponding hint bits as its client state. In the online phase, the client
receives as input some queries x ∈ [n] and it finds a key ki from its state such
that, Test(ki, x) = true. It then sends the punctured key k′ ← Punc(ki, x) to
the second server - which responds with r ← ⊕j∈Set(k′)DB[j], which we refer to
as the ‘database xor bit’ with respect to the key k′. The client can now compute
DB[x] = r ⊕ hi, which is the expected output of the PIR online phase.

This is a simplified version of the original protocol in [CGK20], and the orig-
inal construction has a few more features. Firstly, in the online phase, the client
also interacts with the first server to replenish the key and hint bit that it used
to compute DB[x], and this ensure that the client state always contains T pri-
vately puncturable pseudo-random keys before each online PIR query. Secondly,
note that the right server in the above simplified protocol always views a key of
a set of size (

√
n− 1) punctured at x - and hence its view is not independent of

x. The author further uses privacy amplification techniques to avoid this kind
of leakage.

All follow up PIR with preprocessing works in this CGK paradigm use cryp-
tographic assumptions and they focus on designing a more efficient privately
puncturable pseudo-random set - where the keys has short description size, while
they allow for efficient set membership testing, set enumeration and puncturing
[LP23,GZS24,SACM21]. In all these works, the client and server online computa-

tion is dominated with Õ(
√
n) cryptographic operations (either based on OWF

or public-key primitives) and their bandwidth and client storage complexity have
a multiplicative factor of cryptographic key length as well.

Information-theoretic setting In this work we focus our attention on the fea-
sibility of desinging PIR with client preprocessing schemes with sublinear client
state, online computation and communication in the information theoretic set-
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ting i.e. with no cryptographic assumption. In particular, in the Corrigan-Gibbs
and Kogan paradigm we investigate the feasibility of designing an information
theoretic analog of privately puncturable pseudo-random sets. A major challenge
here is to represent a pseudo-random set of size

√
n with a key of size o(

√
n),

while still allowing for efficient set membership, set enumeration and private
puncturing.

The key observation that helps in the design of this primitive is that the cor-
rectness of the PIR scheme only requires that for any x ∈ [n], Pr(x ∈ Set(k)) =
1/
√
n, where k ← Gen(), and its not required that Set(k) has the same distribu-

tion as a random set of size
√
n (which is a stricter requirement). We exploit this

observation in our design of a privately puncturable random set, where the keys
simultaneously have sufficient randomness and structure to ensure sublinear size,
while allowing for puncturing that hide the punctured element.

Outside theoretical interest, PIR protocols in the information-theoretic set-
ting would be of attractive from a practical viewpoint as well. The computation
complexity in information-theoretic protocols is dominated by simpler algorith-
mic operations (like bit shit, xor, etc), which are orders of magnitude faster than
cryptographic operations in both private-key and public-key regime.

1.1 Our Contribution

Information-theoretic PIR with client preprocesing We initiate the study
of the PIR with client preprocessing model in the information theoretic setting
based on the CGK paradigm [CGK20]. We propose a 2t server PIR with prepro-
cessing protocol with corruption threshold 12, where the client maintains a state
of size Õ(n1/2+1/2t), with online client computation Õ(

√
n), online per server

computation Õ(
√
n) and online communication Õ(

√
n).

In particular, setting t = 2, we get a 4-server PIR with preprocessing pro-
tocols with client storage Õ(n3/4), client/server online computation/bandwidth

Õ(n1/2). Setting t = log(n)/2, we get a log(n)-server PIR with preprocessing pro-

tocols with Õ(n1/2) client storage, client/server online computation and online

bandwidth Õ(n1/2) - where these cost match the original 2-server PIR with pre-
processing construction of Corrigan-Gibbs and Kogan [CGK20] based on OWFs.

All the computation costs reported here are in number of bit operations -
making them orders of magnitude faster than other PIR protocols in the CGK
model - where the client/server computation has to perform O(n1/2) crypto-
graphic operations - each requiring O(poly log(κ)) bit operations, where κ is the
security parameter. The online communication of our scheme has no security
parameter multiplicative factor - which is the case for all previous PIR with
preprocessing constructions in the CGK model.

Improving PIR communication complexity In Section 4.1 we slightly mod-
ify the above construction to reduce the online bandwidth, and the online server
response bandwidth in particular at the cost of doubling the number of servers.

2 i.e. all but one server are honest
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We achieve a 4t server PIR with preprocessing protocol with threshold 1 with on-
line bandwidth n1/2t+o(1), where the offline and online computation asymptotic
complexities remain the same as the above construction.

New information-theoretic primitive The key building block in our PIR
construction is a (t, n)-privately multi-puncturable random set (PMPRS), which
has five algorithms (Gen, Set, Test, Punc, DotProdEval). Similar to the analogous
cryptographic primitive, Gen() outputs a key k, where Set(k) outputs a set of
size
√
n with domain [n] and each element from the domain is contained in the

set with probability 1/
√
n. Function Test(k, x) checks if x

?
∈ Set(k). The multi-

puncturing function Punc(k, x) outputs t tuples of the form (ki, Si, indi) for i ∈
[t], where each punctured key ki corresponds to set Si, and correctness requires
that sets S0, . . . , St−1 are pairwise disjoint, and their union equals Set(k) \ {x}.
We call this primitive a ‘multi-puncturable’ random set, since the partitioned
set S \ {x} is divided into t disjoint sets. Privacy of this scheme requires that
each of these punctured keys are simulatable given just the parameters t, n,
which implies that they hide the punctured element x. This is a generalization
of the traditional privately puncturable set primitive in [CGK20], where Punc
function outputs a single punctured key. The function DotProdEval(ki, i,DB)
exactly captures the server computation - which involves generating the partial
punctured set and compute database xor bit wrt the input punctured key. How-
ever, instead of outputting a single bit, this algorithm outputs a vector v⃗i, such
that the idxthi bit has the expected result i.e. v⃗i[idx] = ⊕j∈SiDB[j]. This kind of
weaker correctness requirement in the CGK model was also first considered in
TreePIR [LP23] - which is a 2-server PIR with preprocessing construction based
on DDH assumption.

We propose an information theoretic construction for (t, n)-PMPRS (for when

n1/2t is an integer) where the key and each punctured key have sizes Õ(tn1/2t).

The running time of Gen,Test,Set,DotProdEval are Õ(tn1/2t), Õ(1), Õ(
√
n) and

Õ(
√
n) respectively. Moreover, all the computation costs are dominated by xor

operations - making this more computationally efficient than analogous privately
puncturable pseudo-random set cryptographic primitives.

Limitations Our work gives an information-theoretic PIR with client prepro-
cessing construction with sublinear online client/server computation and sub-
linear communication for 4 or more servers - since we have a non-trivial (t, n)-
PMPRS construction only for t ≥ 2. It remains open if a non-trivial PIR with
client preprocessing exists for 2 or 3 servers. Our multi-server PIR scheme is
also limited to threshold 1, and a collusion of two or more servers does violate
client query privacy. We leave it as future work to explore the possibility of
construction PIR with client preprocessing with higher corruption thresholds.
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Fig. 1: An example of (n, t) − PMPRS with n = 64, t = 3. The leaf nodes con-
tain the offset values within the specific chunks, which can be computed using
the vector R⃗. The sets S0, S1, S2 represent the multi-puncturing obtained if the
PMPRS set is punctured at x = 38 that’s contained in the set. The leaf nodes
corresponding to each set Si and the path to the punctured element x are high-
lighted using the red boxes and the green filled boxes respectively

1.2 Technical Overview

We divide our technical overview in two parts, first we highlight the key ideas
behind our PMPRS construction, and next we show how this primitive can be
used to construct a multi-server PIR with client preprocessing.

((log2 n)/2, n)-PMPRS construction To illustrate some of the key ideas in our
construction, in this subsection we depict a ((log2 n)/2, n)-PMPRS construction
where n is an even power of 2. The general (t, n) construction and its formal
proof of security are presented in Section 3.

Our scheme generates PMPRS keys that correspond to well-partitioned sets,
which are sets that contains a single element from each chunk of the domain [n],
where the ith chunk is defined as {i

√
n, i
√
n + 1, . . . , i

√
n + (

√
n − 1)}. Hence,

any well-partitioned set contains
√
n elements - one for each chunk. We use the

bijective map (cx, δx) ← ChunkCoord(x) to map any element x ∈ [n] to its cor-
responding chunk cx = (⌊x/

√
n⌋) ∈ [

√
n] and the offset within the chunk δx =

bit decomposition of (x mod
√
n). We sometimes use the integer modulo

√
n

representation of δx as well, but it’ll always be clear from the context. Sets with
this structure were first used in a single server PIR with preprocessing construc-
tion PIANO [ZPSZ23], where the privately puncturable pseudo-random key is
constructed using a pseudo-random function (PRF). The description of each al-
gorithm in our PMPRS scheme is as follows:
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– Gen(): outputs a matrix R⃗ of dimension t × 2, where t = (log2 n)/2 and
each element is sampled randomly from the domain {0, 1}t. We use t as a
shorthand for log2(n)/2 throughout the description of this construction.

– Set(k = R⃗): outputs a well-partitioned set, where the offset of the element in

the ith chunk is given by ⊕t−1
j=0R⃗[j][ij ], where (i0, . . . , it−1)← bit-decomp2(i)

is the bit decomposition of i. Since, i ∈ [
√
n], the bit decomposition of i has

log2(
√
n) = t bits.

– Test(R⃗, x): first compute (cx, δx) ← ChunkCoord(x), and then check if the

offset of the element in Set(R⃗) in the cthx chunk is δx as follows:⊕t−1
j=0R⃗[j][cjx]

?
=

δx, where (c0x, . . . , c
t−1
x )← bit-decomp2(cx).

We can visualize this well-partitioned set using a full binary tree T2,n with
with depth t = log2(n)/2 (and hence it has

√
n leaves) as shows in Figure 1.

We associate random values (R[i][0], R[i][1]) with depth i and we associate the
ith leaf in the tree with the ith chunk. For any path from root to a leaf, we can
xor one of the random strings at each depth, corresponding to whether the path
travels along the left or the right child at that depth. Hence, the value computed
at the ith leaf equals exactly the offset of the element in the ith chunk, as was
computed in Set(R⃗). We will use this tree based interpretation in the description
of the following two algorithms of our PMPRS scheme:

– ((S0, k0, ind0), . . . , (St−1, kt−1, indt−1) ← Punc(k, x): To puncture the set
Set(k) at element x, we can partition the tree T2,n after removing the path
from root to the chunk containing x into t disjoint trees, where the ith tree
Ti (for i ∈ [t]) has root at depth i + 1, and it has 2t−i−1 leaves - which
corresponds to the ith partitioned set Si. Hence, we have ∪t−1

i=0Si = S \ {x}.
An example of these t sets forming a disjoint union of the punctured set
is also highlighted in Figure 1. However, note that each set Si cannot be
part of the key ki since it leaks some information about x - particularly it
leaks that this set doesn’t contain the element of puncturing. To ensure pri-
vacy, while satisfying a ‘weak correctness’ definition, we define the ith key ki
such that it contains sufficient information to compute offsets of all elements
in Si, but it contains no information about the chunks that correspond to
those offsets in Si. This decoupling of the offsets and the chunks is critical
for making the scheme secure. Concretely, the key ki has three components:
a matrix R⃗i = R⃗[i + 1 :][:] i.e. Ri contains all rows ≥ i + 1 of R, it also

contains a correction corr = ⊕i−1
j=0R⃗[j][cjx] where (cx, δx) ← ChunkCoord(x)

and (c0x, . . . , c
t−1
x )← bit-decomp2(cx), and finally it contains R[i][1−cix]. The

first component of the key contains information from R from depth i+1 and
higher, the second component contains partial information of R from depth
0 to i− 1, and in particular it contains the xor of bits in R from these lower
depths corresponding to the bit decomposition of cx, and the third and fi-
nal component contains one of the two random strings of R associated with
depth i that is not used in computing δx (the offset of the punctured ele-
ment). In the next function description we elaborate on how the indexes idxi
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are computed and how the key ki is used construct Si and satisfy a weaker
correctness definition. Its easy to see that key ki hides the element x since
it contains no information about R[i][cix] - masking the value of δx defined
as ⊕t−1

j=0R[j][cjx], and it contains no information about the chunk containing
the punctured element.

– v⃗i ←DotProdEval(ki, i,DB): Given ki = (M⃗i, corr, r), we first compute an

offset vector δ⃗ of length 2t−i−1 - such that this vector contains the offsets
in the leaf nodes of tree Ti in increasing order of chunk indexes. This vector
can be computed using M⃗i in a similar fashion to how the offset vector is
computed in Set algorithm, and further each element of this is xored with
corr ⊕ r. By construction, vector δ⃗ contains offsets of all elements in Si in
order. However, note that ki hides the exact chunk indexes (which depend on
the item being punctured) that these offsets correspond too. Here, we make
the key observation that there are exactly 2i possible trees which could be
Ti - one for each tree rooted at depth (i + 1) in T2,n. Hence, for each of
those 2i trees in order we compute the following: consider the sequence of
chunks (represented by a vector c⃗) corresponding to its leaf nodes in the tree,

and compute a set S′ = {ChunkCoord−1(c⃗[j], δ⃗[j])|j ∈ [2t−j−1]}. Append to
the vector vi (which is initialized as null vector) with the bit ⊕j∈S′DB[j].

Exactly one of these 2i+1 trees would be Ti, and let it be the idxth tree
in the sequence. Then by construction we have v⃗i[idxi] = ⊕j∈SiDB[j] -
satisfying the weak correctness definition of PMPRS. It takes O(2t−i−1) time
to compute each bit of v⃗i and hence the running time of DotProdEval is
2i+1.O(2t−i−1) = O(2t) = O(

√
n).

This construction gives us an information theoretic PMPRS construction with
key size O(log2(n)) for a

√
n sized random set - such that it supports efficient

set membership, set enumeration and t-puncturing! We extend the above con-
struction in Section 3 in a couple ways. Firstly, we ensure that Gen can generate
a set containing a specific element ∆ (which is needed in the PIR construction),
and secondly we give non-trivial PMPRS constructions for smaller t values. In
the general construction we define d = n1/2t (which must be an integer) and we
consider d-ary full tree Tn,d (of depth t = logd n) over the domain [n] instead of
a binary tree. Here to puncture at a leaf node, we can partition the remaining
tree into disjoint union of t “punctured trees” - which is defined a a tree with one
of the root’s children subtrees being removed. A major challenge in the general
construction was to ensure that the DotProdEval has O(

√
n) complexity, as the

trivial approach of considering all possible punctured subtees at depth i lead to
computation complexity O(d

√
n), which can be ω(

√
n) for very small t or large

d. We discuss this issue and the proposed solution in detail in Section 3.

2t-server PIR with client preprocessing Our PIR protocol follows the CGK
paradigm. In the offline phase the client generates T = Õ(

√
n) (t, n)-PMPRS

keys and sends them to server 0. The server responds back with the hint bits for
each of these keys, which is computed as follows for a given key k:⊕j∈Set(k)DB[j].
The client stores the keys and the hint bits as its state.
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In the online phase, the client inputs an index x ∈ [n] and it finds a PMPRS
key such that Test(k, x) = true. It computes ((k0, idx0), . . . , (kt−1, idxt−1)) ←
Punc(k, x)3, and sends ki to server (t + i). The server responds back with the
vector v⃗i ← DotProdEval(ki, i,DB). By the correctness of the PMPRS primitive,
we have ⊕t−1

i=0 v⃗i[idxi] = ⊕j∈Set(S)\{x}DB[j]. And hence if h is the hint bit corre-

sponding to the key k, then the client can compute h⊕ (⊕t−1
i=0 v⃗i[idxi]) = DB[x]

- which is the desired output.

The above construction ends up using the pair (k, h) - and hence we replenish
the state with a new key-hint pair to maintain the same client state. For this,
the client samples a new key k′ such that x ∈ Set(k′). It punctures this key k′

at x and it sends its t components to servers 0, 1, . . . , (t− 1) in the online phase.
Each server responds back with vector output of DotProdEval algorithm. Using
these vectors and the database bit DB[x] the client can compute the hint bit
h′ = ⊕j∈Set(k′)DB[j].

The privacy of the scheme is ensured by the fact that in each online query
each server only views a single punctured PMPRS key - which is simulatable by
definition. And the correctness of this scheme follows from the definition of the
PMPRS construction as described above. We defer the details of the security
proof and the complexity analysis to Section 4.

1.3 Related Work

A trivial approach to solve the PIR problem would be for the client to down-
load the entire database from the server, and store just the element of interest.
However, this leads to linear bandwidth cost. Hence, a line of work starting
with Chor et al. [CKGS98] have focused on reducing the bandwidth cost in
the single server [CMS99,DGI+19,HHCG+23,MW22] and multi-server setting
[BI01,BIKR02,Yek08,Efr09,GI14,BGI15,DG16]. However, all these works have
linear computation complexity for each server - which is inherent in the stan-
dard PIR model as proven by Beimel et al. [BIM00]. To overcome this barrier,
broadly speaking two models were introduced - PIR with batch queries and PIR
with preprocessing.

In a PIR scheme with batch queries a client takes as input a sequence of k in-
dexes, for which it privately queries the server(s). Here the goal is to amortize the
server computation cost across the k queries. A number of works study this model
of batch queries [BIM00,SWP09,IKOS04,LG15,HHG13,AS16,ACLS18], and in
particular the work due to Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS04]

achive the optimal amortized per query server complexity of Õ(n/k).
PIR with pre-processing was first proposed by Beimel, Ishai and Malkin

[BIM00]. In their scheme, in the offline phase the two non-colluding servers do a
one-time computation to store a new encoding of the database with super-linear
size. In the online phase the server can support an unbounded number of client

3 here we ignore the sets Si output by Punc algorithm since they are not used in the
PIR construction
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queries, where the client stores no state from the preprocessing phase. They intro-
duce two information theoretic protocols, one where each server stores a state of
size O(n2) with online computation O(n/ log2 n), and bandwidth O(n1/3). Their
second scheme achieves online computation and bandwidth O(n0.5+ϵ) for any ϵ,
where the client storage is ω(n) and it exponentially increases with decrease in ϵ.
Compared to this information theoretic preprocessing scheme, our construction
has no super linear server state after preprocessing and it enjoys a lower clien-
t/server computation and bandwidth complexity at the price of a higher number
of servers with corruption threshold 1.

PIR with client-side preprocessing was first introduced by Kogan and Corrigan-
Gibbs [KCG21] in the 2-server model, which achieve client state, online clien-

t/server computation and bandwidth Õ(
√
n). This scheme was later improved

in future works, where the focus is either to improve the asymptotic or concrete
online bandwidth [LP23,GZS24,SACM21].Recently a number of single server
PIR with preprocessing protocols were also proposed in the CGK paradigm
[ZPSZ23,MSR23,FLLP24,HHCG+23,CGHK22] - where a single server can per-
form both the offline and online phase while satisfying the privacy requirement.
All these previous works on PIR with client preprocessing are either in the OWF
regime or they used some public key assumption like ϕ-hiding, DDH and LWE.
To the best of our knowledge, there’s no previous work on unconditional PIR
with client preprocessing.

2 Preliminaries

2.1 Algorithmic Notation

A function f : N → R is called negligible it shrinks faster than any inverse
polynomial i.e. for any polynomial p(), there exist an N ∈ N, such that f(n) <
1/p(n) for every n ≥ N . We use the notation negl.(n) to represent any arbitrary

negligible function in n. We use shorthand notation S =
⋃̇m−1

i=0 Si to represent
that the m sets S0, . . . , Sm−1 are pairwise disjoint and their union equals set S.

Notation with an overset arrow (e.g. v⃗, M⃗) is used to represent vectors and
matrices, where capitalized letters are used specifically for matrices. Notation
←$ R signifies sampling a random element from set R. For domain [n] =
{0, 1, . . . , n−1}, we define the ith chunk as the set {

√
ni,
√
ni+1, . . . ,

√
ni+(

√
n−

1)}. Hence, we can view the domain [n] as a disjoint union of
√
n chunks. Define

bijection ChunkCoord(x) = (cx, δx) ∈ [
√
n] × {0, 1}logn/2, where cx = ⌊x/

√
n⌋

is the chunk that contains x and δx = bit decomposition of (x mod
√
n) is the

offset signifying which specific element in the chunk corresponds to x. We refer
to cx as the chunk coordinate of x. Sometimes in the paper we refer to the
mod

√
n representation of δx interchangeably with its bit decomposition - but it

will always be clear from the context. A set S from domain [n] = {0, 1, . . . , n−1}
is called well partitioned if it contains exactly one element from each chunk. Par-
ticularly, note that the description of a well partitioned set can be given by just
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a vector of offsets of size [
√
n], which corresponds to offsets of the elements in

each chunk.
Function v⃗ ← trim(u⃗, i) takes as input a vector u (let say of size n) and an

index i ∈ [n], then it outputs a trimmed version of the input vector with the
ith element removed. Hence, v⃗[j] = u⃗[j] for 0 ≤ j < i and v⃗[j] = u⃗[j + 1] for
j ∈ [i, n− 1].

For any n, t where d = n1/2t is an integer, we use notation Td,n to represent
a full d-ary tree of depth t (= 1/2 logd n) - where the ith leaf node correspond
to the ith chunk of the domain [n]. Note Td,n has exactly

√
n leaf nodes. We

use the notation chunksd,n(v) to represent increasing sequence of chunk indexes
contained in subtree rooted at node v in tree Td,n. Additionally, chunksd,n(v, u)
outputs the vector of increasing chunk indexes in sub-tree rooted at v in Td,n

excluding the chunks/leaf nodes in the subtree rooted at the uth child of v,
where u ∈ [d]. Hence, vector chunksd,n(v, u) doesn’t contain any chunk indexes
contained in the subtree rooted at the uth child node of v.

2.2 Multi-Server PIR with client preprocessing (with threshold 1)

We adapt 2-server PIR with client preprocessing syntax and adaptive security
definitions from Corrigan-Gibbs and Kogan [CGK20] and Shi et al. [SACM21]
to the multi-server and the information theoretic setting here.

An l server protocol contains (l+1) parties: a single Client and l non-colluding
servers Server0, Server1, . . . ,Serverl−1. All parties receive as input the statistical
security parameter λ and the database size n. The protocol proceeds as follows:
– Offline phase: All the servers receive as input a database DB ∈ {0, 1}n.

The client sends a single message to each server, which responds back with
a single message to the client. The client uses these l responses to compute
some state that it stores as output of this offline phase.

– Online phase: The servers can serve an unbounded queries of the following
form: client receives as input an index x ∈ [n], following which the client
sends a single message to each of the servers as a function of its state and
index x. Each server responds back to the client with a single message, which
allows the client to compute an output bit y ∈ {0, 1}.

Correctness For any database DB ∈ {0, 1}n and an arbitrary sequence of
queries (x1, x2, . . .), the client outputs DB[xi] at the end of the ith online query
phase with probability at least 1− negl.(λ).

Privacy The PIR scheme is said to be private with threshold 1, if there exists
a probabilistic polynomial time simulator Sim(1λ, 1n) such that for an adversary
acting as the jth server (for any j ∈ [l]), polynomially bounded (in λ) parameters
n and q and DB ∈ {0, 1}n, the view of the adversary A in the following two
experiments is statistically indistinguishable:
– Real: An honest Client interacts with A(1λ, 1n, DB) who acts as Serverj

and it may actively deviate from the prescribed PIR protocol. At the start
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of each online phase i ∈ [q], A adaptively picks a query xi ∈ [n] which is the
input of the Client in the same phase.

– Ideal: The simulator Sim acts as a Client and it interacts with A(1λ, 1n, DB)
who acts as Serverj and which may actively deviate from the prescribed PIR
protocol. At the start of each online phase i ∈ [q], A adaptively picks a query
xi ∈ [n] for the client, which is not input to Sim.

3 Privately multi-puncturable random set (PMPRS)

In this section we present formal syntax and security definition of our newly
introduced PMPRS primitive. Following which we present our PMPRS construc-
tion, which is based on random sets with some structure imposed by d-ary trees
(for d = n1/2t) using a minimal amount of randomness.

Definition 1 (PMPRS syntax). A (t, n)-PMPRS scheme with input domain
[n] = {0, . . . , n−1} consists of five algorithms (Gen, Set, Test,Punc,DotProdEval)
with the following syntax:
– k ← Gen(∆, 1t, 1n): outputs a short key k ∈ {0, 1}∗ corresponding to a ran-

dom set containing element ∆ ∈ [n]. The parameter ∆ is an optional input
to this algorithm

– S ← Set(k): takes as input a key k, and it outputs a random well partitioned
set from domain [n]

– b ← Test(k, x): takes as input a key k, an element x ∈ [n], and it outputs
a boolean value true or false- corresponding to whether element x is con-
tained in the set represented by k

– ((S0, k0, ind0), (S1, k1, ind1), . . . , (St−1, kt−1, indt−1))← Punc(k, x): outputs t
punctured keys k0, . . . , kt−1, with corresponding integer indexes idx0, . . . , idxl−1

and sets S0, . . . , St−1, such that the t sets form a disjoint union of punctured
set Set(k) \ {x}.

– v⃗i ← DotProdEval(i, ki, DB): is a deterministic function that takes in a
punctured key ki, a vector DB ∈ {0, 1}n and it outputs a vector v⃗i, such
that its indthi bit corresponds to ⊕j∈SiDB[j] - the database xor bit for one of
the partitioned sets

Definition 2 (PMPRS security). A (t, n)-PMPRS scheme (Gen, Set, Test,
Punc, DotProdEval) for domain [n] is λ-secure if is satisfies the following con-
ditions:
– Correctness: For any ∆,x ∈ [n] and DB ∈ {0, 1}n, let

((S0, k0, ind0), . . . , (St−1, kt−1, indt−1))← Punc(Gen(∆, 1t, 1n), x)

then the following holds:
• ∆ ∈ Set(Gen(∆, 1t, 1n))

• S \ {x} =
⋃̇
Si

• for i ∈ [t], v⃗i[indi] = ⊕j∈Si
DB[j]

The second and third correctness requirements mentioned above also hold
when the optional ∆ parameter is not input to Gen algorithm
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– Privacy: There exists a simulator Sim such that for all x ∈ [n], i ∈ [t], the
following distributions are statistically indistinguishable in λ:

k ← Gen(x)
((S0, k0, ind0), . . . , (St−1, kt−1, indt−1))← Punc(k, x)
return ki

∼∼∼λ Sim(1t, 1n, i)

Each punctured key ki can be simulated using just the parameters t, n, i, or
in other words, it hides the punctured element x. It should also be noted
that the vectors v⃗i can be deterministically computed using the DotProdEval
algorithm with input key ki (which is simulatable) and vector DB. Hence, v⃗i
hides element x as well, even if one its bits correspond to the correct database
xor bit on one of the punctured sets.

– Randomness: The set output by Set(Gen(1t, 1n)) contains any element x ∈
[n] with probability 1/

√
n, where the probability is taken over the randomness

of Gen algorithm. Additionally, Set(Gen(∆, 1t, 1n)) contains any element x
not in the same chunk as ∆ with probability 1/

√
n

Our PMPRS construction satisfies a stronger security guarantee which we
define next.

Definition 3. A λ-secure PMPRS scheme with λ = 0 is called perfectly secure.

Efficiency requirements We measure the efficiency of any PMPRS scheme in
terms of the size of the keys and the punctured keys - which would contribute to
the communication potocol of our PIR scheme. We also measure the computation
complexity of the Gen, Test, Set, Punc and DotProdEval algorithms, which would
contribute to the computation complexity of the client and the servers in our
PIR scheme.

3.1 Proposed PMPRS construction

We follow the blueprints of the PMPRS construction described in Section 1.2,
but extend it to random sets generated using a d-ary tree structure instead of a
binary tree. The formal description of our generic (t, n)−PMPRS construction,
where d = n1/2t is an integer is given in Figure 3. We give a high level description
of all the algorithms in this construction next.

The Gen function takes as input an additional ∆ parameter, which should be
contained in the random set corresponding to the output key k. The PMPRS key
output of Gen consists of a matrix R⃗ of dimension t×d and an additional element
corr. The value of corr is picked such that the well-partitioned set generated by
k contains x.

The algorithm Set on input (R⃗, corr) outputs a well partitioned set of size√
n, where the element in chunk c with base d bit decomposition (c0, . . . , ct−1)

is given by corr ⊕
(
⊕t−1

i=0R⃗[i][ci]
)
. Intuitively, this refers to the xor of corr with
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the random strings in R⃗ corresponding to the path in tree Td,n from root to leaf
c.

Hence, the algorithm Test on input x such that (cx, δx) ← ChunkCoord(x),
just checks if Set(k) has offset δx in chunk cx. Note, that this doesn’t require
enumerating the entire well partitioned set, and it can be performed in time
linear in the depth of the tree Td,n.

Function Punc takes as input a PMPRS key k and the index of puncturing
x, such that x ∈ Set(k). At a high level, this function outputs t punctured
keys k0, . . . , kt−1 and corresponding sets S0, . . . , St−1 such that the t sets form
a disjoint union of punctured set S \ {x}. Removing the path from root to the
leaf/chunk containing x in Td,n partitions the remaining tree intro t “punctured
trees”, where the ith punctured tree (lets call it T ′

i for i ∈ [t]) contains a subtree
with root at depth i after removing the subtree rooted at exactly one of its
children nodes. This structure is also depicted in Figure 2. The set Si contains
elements of S with chunk indexes in exactly in the leaf nodes of sub-tree T ′

i .
Each key ki is constructed such that it contains exactly the information needed
to compute the offset (in order) of all elements corresponding to the leaf nodes
in T ′

i .

Fig. 2: Example tree Td,n associated with (n, t) − PMPRS for parameters n =
272, t = 3, implying d = 3. The green path corresponds to the punctured element.
Then punctured trees corresponding to sets S0, S1, S2 output of Punc are colored
red, blue and yellow respectively except for their roots, which are on the green
path. Particularly note each of these “punctured trees” has root at a unique
depth, and exactly one of their children subtrees missing

The function DotProdEval captures the computation performed by each server
in our PIR scheme based on PMPRS. On input i, ki, DB the goal of this algo-
rithm is to compute the database xor bit of set Si (i.e. ⊕j∈SiDB[j]). We can
view this expected output as the dot product between two vectors: the database
DB and the indicator vector I⃗Si

of set Si ⊂ [n]4. However, our PMPRS scheme
allows for a weaker correctness notion - where DotProdEval outputs a vector v⃗i
such that its idxth bit (which was output of Punc) is the correct expected output.
At a high level, this algorithm works in two stages:
– Given the punctured key ki we can first compute an offset vector δ⃗ - which

contains the offsets of all elements in Si in order from left to right chunk.

4 the indicator vector I⃗S of a set S from domain [n] is a bit vector of size n such that
I⃗S [i] = 1 ⇐⇒ i ∈ S
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– Secondly, the algorithm computes the chunk vector c⃗ for every possible
“punctured subtree” at depth i in Td,n - where exactly one of them is T ′

i . For
each of these possible punctured subtrees, we can compute the punctured
set (given offsets δ⃗ and corresponding chunk indexes c⃗). We use notation
Suw to represent corresponding to a tree rooted at node u with subtree at
child node w punctured. The algorithm computes database xor bit for Suw

and it appends it to the output vector vi. If idxi refers to the index of chunk
sequence for T ′

i , then by construction v⃗i[idxi] = ⊕j∈Si
DB[j] - proving the

PMPRS scheme is correct. The privacy follows from the observation that
the offset of the punctured element x = ChunkCoord−1(cx, δx) is given by

δx = corr⊕ (
(
⊕t−1

i=0R⃗[i][cix]
)
) where (cx0 , . . . , c

x
t−1) is the base-d bit decompo-

sition of cx, and the fact that key ki contains no information about R[i][cix]
- which is one of the randomly sampled elements in Gen corresponding to
depth i in tree Td,n.

The trickiest part is to prove that DotProdEval has run time Õ(
√
n) on ar-

bitrary input i, di, DB. Note that there are di+1 punctured subtrees at depth
i or sets Suw that might correspond to the set Si, since there are di nodes
at depth i, where any of its d children subtrees could be punctured. Each of
these sets Suw has size dt−i − dt−i−1. Hence, trivially computing the database
xor bit for each of these sets would lead to complexity Õ(dt−i−1(d − 1)di+1) =

Õ((d − 1).dt) = O(d
√
n), which can be ω(

√
n) when d = ω(1). To reduce the

computation complexity, we make the key observation that for any node u in
Td,n at depth i and two adjacent children nodes w,w′ of u, the sets Suw and Suw′

only differ in 2.dt−i−1 elements, and otherwise they overlap. Hence, given the
database xor bit for set Suw, we can compute the database xor bit for set Suw′

in time Õ(dt−i−1) instead of Õ(dt−i) time that it takes to compute it trivially.
This gives us the needed factor O(d) improvement in the runtime - making the

complexity of DotProdEval Õ(
√
n).

Theorem 4. Let F be a (t, n)-PMPRS construction shown in Figure 3. Then F
is perfectly secure.

Proof. By Lemma 5, we know that F satisfies the correctness property defined
in Definition 2. By Lemma 6, we know that F satisfies the randomness property
defined in Definition 2. By Lemma 7, we can construct the simulator Sim that
satisfies the following condition for λ = 0:

k ← Gen(x)
((S0, k0, ind0), . . . , (St−1, kt−1, indt−1))← Punc(Gen(∆, 1t, 1n), x)
return ki

∼∼∼λ Sim(1t, 1n, i)

Our simulator construction works as follows: (on input t, n, i)
– Initialize (d−1)-length vector r⃗i where each element is uniformly distributed

over [
√
n].
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Let d = n1/2t

Gen (1t, 1n,∆):

(c∆, δ∆)← ChunkCoord(∆)
(c0∆, c1∆, . . . , ct−1

∆ )← bit-decompd(c∆)

Pick t× d random matrix R⃗ where each element is sampled ←$ {0, 1}m

If ∆ parameter is input, set corr← δ∆ ⊕ (⊕t−1
i=0R⃗[i][ci∆]), else set corr←$ {0, 1}m

return (R⃗, corr)

Set(k = (R⃗, corr)) :

Initialize S ← {}
For each c ∈ [

√
n]:

(c0, c1, . . . , ct−1)← bit-decompd(c)

update S ← S ∪
{
ChunkCoord−1

(
c, corr⊕

(
⊕t−1

i=0R⃗[i][ci]
))}

return S

Test(k = (R⃗, corr), x) :

(cx, δx)← ChunkCoord(x)
(c0x, c

1
x, . . . , c

t−1
x )← bit-decompd(cx)

return corr⊕
(
⊕t−1

i=0R⃗[i][cix]
)

?
= δx

Punc(k = (R⃗, corr), x):

(cx, δx)← ChunkCoord(x)
(c0x, c

1
x, . . . , c

t−1
x )← bit-decompd(cx)

For i ∈ [t]:

Set R⃗i ← R⃗[i+ 1 :][:]

Set r⃗i ← trim(R⃗[i], cix)

Set corri ← (⊕i−1
j=0R⃗[j][cjx])⊕ corr

ki ← (corri, r⃗i, R⃗i)
Set z ← bit-decomp−1

d (c0x, . . . , c
i−1
x )

indi ← zd+ cix
u← node in Td,n at depth i on path from root to cx-th leaf node
Si ← subset of Set(k) \ {x} with chunk coordinates in chunksd,n(u, c

i
x)

return ((S0, k0, ind0), . . . , (St−1, kt−1, indt−1))
DotProdEval(i, ki, DB):

Parse ki as (corri, r⃗i, R⃗i)

Initialize vectors v⃗i, δ⃗ of size di+1 and (d− 1) · dt−i−1 respectively
For j ∈ [d− 1], j′ ∈ [dt−i−1] :

(c0, c1, . . . , ct−i−1)← bit-decompd(j
′)

δ⃗[j · dt−i−1 + j′]← corr⊕ r⃗i[j]⊕
(
⊕i′=t−i−1

i′=0 R⃗i[i
′][ci

′
]
)

Initialize an iterator j′ ← 0
For each depth i node u in Td,n, its child node w ∈ [d] (in left-to-right order):

c⃗← chunksd,n(u,w)

Initialize set Suw ← {ChunkCoord−1(c⃗[j], δ⃗[j]| j ∈ [|δ⃗|]])}
Set v⃗i[j

′]← ⊕j∈SuwDB[j]
Update j′ ← j′ + 1

Return v⃗i

Fig. 3: Proposed (t, n)-PMPRS construction (where n1/2t is an integer)
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– Initialize (t− i− 1)× d random matrix R⃗i where each element is uniformly
distributed over [

√
n].

– Initialize corr sampled from uniform distribution over [
√
n].

– Return ki ← (corri, r⃗i, R⃗i).

Lemma 5 (Correctness). The (t, n)-PMPRS construction shown in Figure 3
satisfies the correctness definition given in Definition 2.

Proof. We first consider the case that the parameter ∆ is given as input. First
we check ∆ ∈ Set(Gen(∆, 1t, 1n)). This is by construction and we could show it
passes the membership test F.Test(k,∆). Let (c∆, δ∆) ← ChunkCoord(∆) and
(c0∆, c1∆, . . . , ct−1

∆ )← bit-decompd(c∆). We can verify that

corr⊕
(
⊕t−1

j=0R[j][cj∆]
)
= δ∆ ⊕

(
⊕t−1

j=0R[j][cj∆]
)
⊕
(
⊕t−1

j=0R[j][cj∆]
)
= δ∆.

Then we check S \{x} =
⋃̇
Si. We first show that for distinct i, j ∈ [t], Si and

Sj are disjoint. Let Ci and Cj be the corresponding set of chunk coordinates of
Si and Sj . We show Si and Sj are disjoint by showing Ci and Cj are disjoint,
this is simply because if two elements are in different chunks, they cannot be
the same. WLOG, we consider the case i < j. Let (cx, δx) ← ChunkCoord(x)
and let p be the internal node in Td,n at depth i on path from root to cx-th leaf
node. By definition Ci = chunksd,n(p, c

i
x), which is the set of chunks excluding

the chunks/leaf nodes in the sub-tree rooted at cix-th child of p and Cj is the
subset of chunks in this excluded sub-tree, so Ci and Cj are disjoint. Then we
show S \{x} =

⋃
Si. This is because, by construction,

⋃
Ci = [

√
n]\ cx includes

all the leaf nodes of the tree Td,n except the cx-th leaf, which represents the set
S \ {x}.

We next show that for all i ∈ [t], vi[indi] = ⊕j∈Si
DB[j]. WLOG, we fixed an

arbitrary i ∈ [t]. By indi’s definition, we find the set Suw where w is the cix-th
children node of u and u be the internal node in Td,n at depth i on the path
from root to cx-th leaf node. By checking the definition of Suw, we can see it
exactly equals to Si. So we have

v⃗i[indi] = ⊕j∈Suw
DB[j] = ⊕j∈Si

DB[j].

Lastly, We consider the case that the optional parameter ∆ is not given as
input. We no longer have the requirement that ∆ ∈ Set(Gen(∆, 1t, 1n)). For

the statement S \ {x} =
⋃̇
Si and vi[indi] = ⊕j∈Si

DB[j], since our above proof
doesn’t rely on ∆, it still holds when ∆ is not input.

Lemma 6 (Randomness). Let F be a (t, n)-PMPRS construction shown in
Figure 3. Then, for any x ∈ [n],

Pr
[
x ∈ F.Set(Gen(1t, 1n))

]
=

1√
n
.

Additionally, for any ∆ ∈ [n], and any x ∈ [n] not in the same chunk as ∆,

Pr
[
x ∈ F.Set(Gen(∆, 1t, 1n))

]
=

1√
n
.
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Proof. Let (cx, δx) ← ChunkCoord(x) and (c0x, c
1
x, . . . , c

t−1
x ) ← bit-decompd(cx).

Let X be the cx-th element being added into the set F.Set(Gen(1t, 1n). Then,
we have

Pr
[
x ∈ F.Set(Gen(1t, 1n))

]
= Pr [X = δx]

= Pr
[
corr⊕

(
⊕t−1

j=0R⃗[j][cjx]
)
= δx

]
=

1√
n
.

The second last step is by definition of Figure 3. The last step is because R⃗[j][cjx]
and corr are mutually independent and uniformly distributed over [

√
n], so does

the sum of them corr⊕
(
⊕t−1

j=0R⃗[j][cjx]
)
.

Similarly, for any ∆ ∈ [n], and any x ∈ [n] not in the same chunk as ∆,
let (cx, δx) ← ChunkCoord(x) and (c0x, c

1
x, . . . , c

t−1
x ) ← bit-decompd(cx). Let X

be the cx-th element being added into the set F.Set(Gen(1t, 1n). let (c∆, δ∆)←
ChunkCoord(∆) and (c0∆, c1∆, . . . , ct−1

∆ )← bit-decompd(c∆). We have

Pr
[
x ∈ F.Set(Gen(∆, 1t, 1n))

]
= Pr [X = δx]

= Pr
[
corr⊕

(
⊕t−1

j=0R⃗[j][cjx]
)
= δx

]
= Pr

[
δ∆ ⊕

(
⊕t−1

j=0R⃗[j][cj∆]
)
⊕

(
⊕t−1

j=0R⃗[j][cjx]
)
= δx

]
= Pr

[(
⊕t−1

j=0R⃗[j][cj∆]
)
⊕

(
⊕t−1

j=0R⃗[j][cjx]
)
= δx ⊕ δ∆

]
=

1√
n
.

The last step is because every R⃗[j][cj∆] and R⃗[j][cjx] are mutually independent
and uniformly distributed over [

√
n] since cx ̸= c∆ by definition. Therefore,

the sum of them
(
⊕t−1

j=0R⃗[j][cj∆]
)
⊕
(
⊕t−1

j=0R⃗[j][cjx]
)
is uniformly distributed over

[
√
n].

Lemma 7 (Privacy). Let F be a (t, n)-PMPRS construction shown in Fig-
ure 3, x ∈ [n], and ((S0, k0, ind0), . . . , (St−1, kt−1, indt−1))← F.Punc(F.Gen(x), x).

For any x ∈ [n], i ∈ [t], ki = (corri, r⃗i, R⃗i) follows a joint distribution with size
(t− i)×d where each component is independently and uniformly distributed over
[
√
n].

Proof. We first show that every element in corri, r⃗i, R⃗i follows a uniform distri-
bution over [m], and then we will show that elements in corri, r⃗i, R⃗i are mutually
independent.

Recall that R⃗ is a t × d random matrix where each element is uniformly
distributed over [

√
n]. Let (cx, δx) ← ChunkCoord(x) and (c0x, c

1
x, . . . , c

t−1
x ) ←

bit-decompd(cx). By corr’s definition, corr = δx ⊕ (⊕t−1
j=0R⃗[j][cjx]) is uniformly

distributed over [
√
n]. So corri ← (⊕i−1

j=0R⃗[j][cjx]) ⊕ corr is uniformly distributed
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over [
√
n]. Since all elements in r⃗i are defined as xor of elements in R⃗, so they

are uniformly distributed over [
√
n]. Lastly, by R⃗i’s definition, every element in

R⃗i is a copy of an element in R⃗, so all elements in R⃗i are uniformly distributed
over [

√
n].

We now show elements in corri, r⃗i, R⃗i are mutual independent.
– We initialize an empty set S and add all elements in R⃗i and r⃗i into S.

We know that elements in S are mutual independent since, by definition,
every element in R⃗i or r⃗i is a copy of an distinct element in R⃗ and so is
independently sampled.

– By corri’s definition, we know corri is independent of S, since (⊕i−1
j=0R⃗[j][cjx])

is independent of S.
– Update S ← S ∪{corri}, we know all elements in S are mutual independent.

Since S equals the union of elements in corri, r⃗i, R⃗i, we conclude that elements
in corri, r⃗i, R⃗i are mutual independent.

Theorem 8. Let F be a (t, n)-PMPRS construction shown in Figure 3. Then
– The time complexity of F.Test(k, x) for any valid k, x is O(poly. log(n)).

– The time complexity of F.Set(k) for any valid k is Õ(
√
n).

– The time complexity of F.Punc(k, x) for any valid k, x is Õ(
√
n + t2n1/2t).

Additionally, for t ∈ [2, 1
2 log(n)], F.Punc(k, x) runs in Õ(

√
n).

– The time complexity of F.DotProdEval(i, ki, DB) for any valid i, ki, DB is

Õ(
√
n).

– The key k and punctured key ki have size Õ(tn1/2t) for every i ∈ [t].

Proof. We first note that for any input from [n], all the ChunkCoord(·), ChunkCoord−1(·, ·)
, bit-decomp(·) and ⊕ operations can be done in O(poly. log(n)).

By F.Test(k, x)’s definition, we can verify that it runs in O(poly. log(n)) for
any valid k, x.

By F.Set(k)’s definition, it runs a for loop O(
√
n) times and each loop can be

done in O(poly. log(n)). Therefore, F.Set(k) runs in O(poly. log(n)·
√
n) = Õ(

√
n)

for any valid k.
By F.Punc(k, x)’s definition, it computes (Si, ki, indi) for each server i ∈ [t].

ki can be computed in O(id·poly. log(n)), indi can be computed in O(poly. log(n))
and Si can be computed inO(dt−ipoly. log(n)). Summing up together, F.Punc(k, x)
runs in O(poly. log(n)·(

√
n+t2n1/2t)). Additionally, if we choose t ∈ [2, 1

2 log(n)],

F.Punc(k, x) runs in O(poly. log(n) ·
√
n) = Õ(

√
n).

We now compute the time complexity of F.DotProdEval(i, ki, DB). To con-

struct the offset vector δ⃗, DotProdEval runs a for loop O(dt−i) times and each
loop can be done in O(poly. log(n)).

To compute a single element in v⃗i, since the corresponding set Suw is with size
O(dt−i), so the total computation time is O(dt−ipoly. log(n)). However, we note
that, for adjacent element in v⃗i, their corresponding set Suw and Suw′ are only
different in 2 · dt−i−1 elements. This is because w and w′ are sibling nodes and
the chunks/leaf nodes in the sub-tree rooted at w and w′ are the only elements
that differentiate Suw and Suw′ . This observation says that we only need to do
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a full computation on v⃗i[0], and all the rest elements of v⃗i can be computed in
O(dt−i−1poly. log(n)) time. Since v⃗i has d

i+1 nodes, the total computation of v⃗i
is O(dtpoly. log(n)).

Summing up the complexity of computing both vectors δ⃗ and v⃗i, we conclude
that F.DotProdEval(i, ki, DB) runs in O(poly. log(n)·dt) = O(poly. log(n)·

√
n) =

Õ(
√
n) for any valid i, ki, DB.

Lastly, to see the size of k = (R⃗, corr), since R⃗ is a t× d matrix where every
entry has size 1

2 log2 n and corr is a 1
2 log2 n-bits string. Therefore, k has size

O(td · poly. log(n)) = Õ(tn1/2t). Similarly, by definition, punctured key ki =

(corri, r⃗i, R⃗i) has size O(td · poly. log(n)) = Õ(tn1/2t).

4 Proposed scheme for PIR with client preprocessing

As described in the technical overview, our PIR construction is in the CGK
paradigm, where instead of 2 servers, our construction assumes 2t servers for
t ≥ 2. Next we reiterate a high level outline for the PIR protocol, which we
present formally in Figure 4.

Let n represent the size of the database DB, and 2t is the number of servers.
In the offline phase the client generates PMPRS keys: ki ← Gen() for i ∈ [T ] =
{1, 2, , . . . , T}, where T = λ

√
n and λ is the statistical security parameter. The

client sends these PMPRS keys to Server 0. Let k⃗ be a vector of keys such that
k⃗[i] = ki.

Server 0 interprets each of these PMPRS keys as a partitioned pseudo-random
set (using Set function) each of size

√
n - allowing it to compute the hint bit

hi = ⊕j∈Set(ki)DB[j]. The Server 0 sends back the vector h⃗ with h⃗[i] = hi to the

Client. The Client stores state (k⃗, h⃗) as output of the offline phase.

In the online phase, the client on input PIR index x ∈ [n] first searches for

a key ki in k⃗ such that Test(ki, x) = true. With probability (1− negl.(λ)) such
a key would exist. This follows from the randomness property of the PMPRS
primitive:

Pr(x /∈ Set(Gen(1t, 1n))) =
(
1− 1/

√
n
)

=⇒ Pr (x /∈ Set(k0) ∧ x /∈ Set(k1) . . . ∧ x /∈ Set(kT−1)) = (1− /
√
n)λ

√
n ≤ e−λ

Next, the Client computes the punctured keys as ((S0, k0, ind0), (S1, k1, ind1),
. . . , (St−1, kt−1, indt−1)) ← Punc(k, x) and sends to Server (t + i) the punc-
tured key ki. Each of these servers respond back with vectors v⃗i as output by
DotProdEval(ki, i,DB). The client can now compute the PIR output DB[x] as
hi ⊕

(
⊕t−1

j=0v⃗i[idxi]
)
.

The client ends up consuming a PMPRS key and corresponding hint bit
(ki, hi). To replenish the same, the Client generates a new PMPRS key k′ con-
taining x and it computes its hint bit by sharing punctured keys of Punc(k′, x)
with Servers 0, 1, . . . t− 1.
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Given a (t, n)-PMPRS F
Let T = λ

√
n.

Offline Phase:
Client computes ki ← F.Gen(1t, 1n) for every i ∈ [T ]

Client initializes vector k⃗ such that k⃗[i] = ki
Client sends k⃗ to Server 0
Server 0 computes hi = ⊕j∈F.Set(ki)DB[j] for every i ∈ [T ]

Server 0 initializes vector h⃗ such that h⃗[i] = hi and send it back to the Client

Client stores h⃗ and k⃗ as its local state

Online Phase (Client inputs x ∈ [n]):
Client computes the following:

Find a i ∈ [T ] such that F.Test(k⃗[i], x) = true and set k ← k⃗[i] and h← h⃗[i]
((S0, k0, ind0), (S1, k1, ind1), . . . , (St−1, kt−1, indt−1))← F.Punc(k, x)

Client sends ki to Server t+ i for each i ∈ [t]
Each server t+ i (for i ∈ [t]) computes the following:

v⃗i ← F.DotProdEval(i, ki, DB)
Send v⃗i back to Client

Client on receiving v⃗i from each Server t+ i (for i ∈ [t]) computes:
DB[x]← v⃗0[ind0]⊕ · · · ⊕ v⃗t−1[indt−1]⊕ h
k′ ← F.Gen(1t, 1n, x)
((S′

0, k
′
0, ind

′
0), (S

′
1, k

′
1, ind

′
1), . . . , (S

′
t−1, k

′
t−1, ind

′
t−1))← F.Punc(k′, x)

Client sends k′
i to Server i for each i ∈ [t]

Each server i (for i ∈ [t]) computes the following:
v⃗′i ← F.DotProdEval(i, k′

i, DB)
Send v⃗′i back to Client

Client on receiving v⃗′i from each Server i (for i ∈ [t]) computes:
h′ ← v⃗′0[ind

′
0]⊕ · · · ⊕ v⃗′t−1[ind

′
t−1]⊕DB[x]

Update the used (k, h) pair from vectors k⃗, h⃗ with (k′, h′)

Fig. 4: Proposed 2t server PIR with pre-processing protocol for database of size
n given a (t, n)-PMPRS

Theorem 9. Suppose that F is ϵλ-secure (t, n)-PMPRS, then the 2t-server PIR
scheme (shown in Figure 4) that supports poly(λ) queries is ϵλ-private.

Proof. The proof is a direct combination of Lemma 10 and Lemma 11.

Lemma 10. Suppose that F is ϵλ-secure (t, n)-PMPRS, then for any polynomial
function p(·), and any adversary A that acts on behalf of Server i ∈ {t, · · · , 2t−1}
and adaptively makes p(λ) queries, there exists a PPT simulator Sim(1λ, 1n),
where the polynomial is in terms of n, λ, such that

viewReal
∼∼∼ϵλ viewSim,

where viewReal, viewSim are the distributions of A’s views interacting with a real
client in Figure 4 and Sim, respectively.
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Proof. We first construct the following simulator Sim. Note that viewSim follows

the distribution (k1i , · · · , k
p(λ)
i ).

Simulator construction.
Upon receiving the q-th query index idx ∈ [n], if q > p(λ) then aborts; otherwise
computes the following:
– Ignores idx and samples a new index y ←$ [n].
– kq ← F.Gen(1t, 1n, y).
– Computes ((S0, k

q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1))← F.Punc(kq, y).

– Sends kqi to A.

Indistinguishablity of viewReal and viewSIM .
To prove viewReal

∼∼∼ϵλ viewSim, we follow a standard hybrid argument. We
first construct Experiment Hyb1 described below. From the privacy property
of of the underlying PMPRS scheme F , we have viewSIM

∼∼∼ϵλ viewHyb1. We
highlight the difference between Sim and Experiment Hyb1 with a shaded back-
ground.

Experiment Hyb1 Upon receiving the q-th query index idx ∈ [n], if q > p(λ)
then aborts; otherwise proceeds the following:

– kqi ← SimF (1
t, 1n, i), where SimF is a simulator for F defined in Definition 2.

– Sends kqi to A.

We again follow the Privacy property of the underlying PMPRS scheme F ,
and have viewHyb1

∼∼∼ϵλ viewHyb2.

Experiment Hyb2 Upon receiving the q-th query index idx ∈ [n], if q > p(λ)
then aborts; otherwise proceeds the following:

– Computes kq ← F.Gen(1t, 1n, idx).
– Computes ((S0, k

q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1)) ←

F.Punc(kq, idx).

– Sends kqi to A.

We highlight the difference between the Realworld Construction and the
Experiment Hyb2 with a shaded background. Note that viewReal follows the

distribution (k1i , · · · , k
p(λ)
i ) in the Realworld Construction below. The differ-

ence between the Realworld Construction and the Experiment Hyb2 is that the
puncturable random sets in Real is generated offline and there is a negligible
probability of it not being able to find a random set containing idx (by the
guarantee of choosing parameter T ). Since the adversary didn’t participate in
the offline phase, it has no chance to see the puncturable random set generated
in offline phase, so viewHyb2

∼∼∼ϵλ viewReal.

Realworld Construction Upon receiving the q-th query index idx ∈ [n], if
q > p(λ) then aborts; otherwise proceeds the following:

– Find a k ∈ k⃗ such that F.Test(k, x) = true
– Set kq ← k
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– Computes ((S0, k
q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1))← F.Punc(kq, idx).

– Sends kqi to A.

By the standard hybrid argument, we conclude that viewReal
∼∼∼ϵλ viewSim.

Lemma 11. Suppose that F is ϵλ-secure (t, n)-PMPRS, for any polynomial func-
tion p(·), and any adversary A that acts on behalf of Server i ∈ [t] and adaptively
makes p(λ) queries, there exists a PPT simulator Sim(1λ, 1n), where the polyno-
mial is in terms of n, λ, such that

viewReal
∼∼∼ϵλ viewSim,

where viewReal, viewSim are the distributions of A’s views interacting with a real
client in Figure 4 and Sim, respectively.

Proof. We first construct the following simulator Sim for any adversary A that
acts on behalf of Server i ∈ {1, · · · , t − 1}, and prove viewReal

∼∼∼ϵλ viewSim.
Then, we will show how to extend the simulator and the proof to A that acts on
behalf of Server 0, which also participates the offline phase. Note that viewSim

follows the distribution (k1i , · · · , k
p(λ)
i ).

Simulator construction.
Upon receiving the q-th query index idx ∈ [n], if q > p(λ) then aborts; otherwise
proceeds the following:
– Ignores idx and samples a new index y ←$ [n].
– Computes kq ← F.Gen(1t, 1n, y).
– Computes ((S0, k

q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1))← F.Punc(kq, y).

– Sends kqi to A.

Indistinguishablity of viewReal and viewSIM . To prove viewReal
∼∼∼ϵλ viewSim,

we follow a standard hybrid argument. We construct Experiment Hyb1 in the
below. Directly following the Privacy property of the underlying PMPRS scheme
F , we have viewSIM

∼∼∼ϵλ viewHyb1. We highlight the difference between Sim and
Experiment Hyb1 with a shaded background.

Experiment Hyb1 Upon receiving the q-th query index idx ∈ [n], if q > p(λ)
then aborts; otherwise proceeds the following:

– kqi ← SimF (1
t, 1n, i), where SimF is a simulator for F defined in Definition 2.

– Sends kqi to A.

We again follow the Privacy property of the underlying PMPRS scheme F ,
and have viewHyb1

∼∼∼ϵλ viewReal.

Realworld Construction Upon receiving the q-th query index idx ∈ [n], if
q > p(λ) then aborts; otherwise proceeds the following:

– Computes kq ← F.Gen(1t, 1n, idx).
– Computes ((S0, k

q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1)) ←

F.Punc(kq, idx).
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– Sends kqi to A.

We then construct the simulator Sim0 for any adversary A that acts on behalf
of Server 0. The proof of viewReal

∼∼∼ϵλ viewSim0
follows exactly the same flow in

the above.
Simulator construction.
In the offline phase,
– For i = 1 to T : computes ki ← F.Gen(1t, 1n).
– Sends k0. . . . , kT−1 to A.

In the online phase, upon receiving the q-th query index idx ∈ [n], if q > p(λ)
then aborts; otherwise proceeds the following:
– Ignores idx and samples a new index y ←$ [n].
– Computes kq ← F.Gen(1t, 1n, y).
– Computes ((S0, k

q
0, ind0), (S1, k

q
1, ind1), . . . , (St−1, k

q
t−1, indt−1))← F.Punc(kq, y).

– Sends kqi to A.

Theorem 12. The 2t-server PIR with client preprocessing protocol (in Fig-
ure 4) instantiated with the (t, n) − PMPRS F (in Figure 3) has the following
complexity:
– Õ(λ

√
nt2n

1
2t ) client storage. If t ∈ [2, log2(n)], Õ(λ

√
n) client storage;

– No additional server storage after offline phase;
– Offline Phase:
• Õ(λn) server time and Õ(λ

√
ntn

1
2n ) client time; if t ∈ [2, log2(n)],

Õ(λ
√
n) client time;

• Õ(λn1/2+1/2t) communication;
– Online Phase:
• Õ(

√
n) server time and Õ(

√
n + t2n1/2t) client time; if t ∈ [2, log2(n)],

Õ(
√
n) client time;

• Õ(
√
nt) communication; if t ∈ [2, log2(n)], Õ(

√
n) communication.

Therefore, the amortized communication per query is Õ(
√
n), and the amortized

server computation and client computation per query is Õ(
√
n) if we choose

t ∈ [2, log2(n)].

Proof. On the client side, it stores the hint vector h⃗ and the key vector k⃗
and also needs a buffer to store F.Punc’s output. Recall h⃗ and k⃗ both have
size T = O(λ

√
n) and each element requires O(1) and Õ(tn 1

2t ) storage, sepa-

rately. F.Punc’s output requires O(t log(n)), Õ(t2n 1
2t ), O(

√
n log(n)) storage for

S, k, ind, separately. Summing up together, client needs storage Õ(λ
√
nt2n

1
2t ). If

we choose t ∈ [2, log2(n)], client-side storage is Õ(λ
√
n).

During the offline phase, Server 0 computes F.Set() function T times, so its

computation is bounded by Õ(λn). Client computes F.Gen() function T times,

so its computation is bounded by Õ(λ
√
ntn

1
2n ). If we choose t ∈ [2, log2(n)],

client’s computation is Õ(λ
√
n). For the communication, Server 0 and Client

communicate h⃗ and k⃗, the size of which are Õ(λ
√
nt2n

1
2t ). If we choose t ∈

[2, log2(n)], the communication overhead is Õ(λ
√
n).
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During the online phase, each Server i (for i ∈ [2t]) computes F.DotProdEval

per query in Õ(
√
n). Client computes F.Punc twice per query in Õ(

√
n+t2n1/2t).

If we choose t ∈ [2, log2(n)/2], the client-side computation is Õ(
√
n) per query.

The communication between servers and Client is bounded by Õ(
√
nt). Since

Client receives v⃗i from each server i ∈ [2t] and the size of v⃗i is bounded by
√
n.

If we choose t ∈ [2, log2(n)/2], the communication overhead is Õ(λ
√
n).

The correctness proof of our PIR scheme is pretty straightforward and it
follows the same blueprints as other PIR correctness proofs in CGK paradigm
[CGK20,LP23]. At a high level, we prove the client always maintains a state
containing T random PMPRS keys. In each online phase the client finds a key
k containing its query x with probability 1 − negl.(λ). Using the key k and its
hint bit the client retrieves the correct database bit DB[x] and it replenishes the
used key and hint bit, where the correctness of our PMPRS scheme ensures the
correctness of the online phase of our construction.

Remark 13 (Extending our PIR scheme for arbitrary n). The proposed 2t server
PIR scheme with client preprocessing assumes a (n, t)-PMPRS as building block.
However, our PMPRS scheme gives us a construction only for parameters t, n
such that n1/2t is an integer. To get a PIR scheme for arbitrary n ∈ N and 2t
servers, we can find the smallest integer m greater than or equal to n such that
m1/2t is an integer, then we havem = O(tn). Now we can pad the database of size
n with m − n dummy elements and then use our PIR scheme based on (m, t)-
PMPRS to query the modified database. For t ∈ [2, log(n)/2] the asymptotic
complexity of offline phase and online phase of this modified protocol would
remain unchanged up to polylogarithmic factors in n.

4.1 Improving PIR Communication complexity

In our proposed PIR with client preprocessing scheme, the online phase commu-
nication is dominated by the cost of server responses - which include vectors v⃗i
output by the DotProdEval algorithm. However, note that the Client is interested
in learning just the idx0, idx1, . . . , idx

th
t−1 bits of the vectors v⃗0, v⃗1, . . . , . . . , v⃗t−1

respectively, since these specific bits allow the client to compute the database xor
bit of the punctured set. In our constructions these vectors v⃗0, v⃗1, . . . , . . . , v⃗t−1

are of length d, d2, . . . , dt =
√
n respectively (where d = n1/2t is an integer).

Hence, a natural approach to reduce communication would be to use a PIR
scheme where the database on the server side are the vectors v⃗0, v⃗1, . . . , . . . , v⃗t−1

with client query indexes idx0, idx1, . . . , idx
th
t−1, instead of downloading the entire

vectors on to the client. However, there exist no non-trivial information theoretic
PIR schemes in the single server model [BIKM99].

Hence, our next approach would be to consider 4t servers instead of 2t servers
- two servers for each server in the original PIR scheme. For every server and
its copy the client sends the same online query - and hence these pair of servers
compute the same vector v⃗i as output of DotProdEval in the online phase. And
now the Client can use a 2-server PIR scheme to retrieve just the bit of interest
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v⃗i[idxi] in sublinear communication and linear computation in the database size.
Since the vectors in our construction have size O(

√
n) - the computation com-

plexity of client and servers in the online phase remains unaffected. Instantiating
the 2-server PIR primitive with the most communication efficient information-
theoretic PIR due to Dvir and Gopi [DG16] gives us the following result:

Theorem 14. There exists a 4t-server PIR with client preprocessing proto-
col with threshold 1 with Õ(λ

√
n) client storage; Õ(λn) server offline time;

Õ(λn1/2+1/2t) offline communication; Õ(
√
n) online client/server time per query

and n1/2d+o(1) online communication.
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