
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

How to Make Private Distributed Cardinality Estimation
Practical, and Get Differential Privacy for Free

Changhui Hu, Newcastle University; Jin Li, Guangzhou University; Zheli Liu,
Xiaojie Guo, Yu Wei, and Xuan Guang, Nankai University; Grigorios Loukides,

King’s College London; Changyu Dong, Newcastle University
https://www.usenix.org/conference/usenixsecurity21/presentation/hu-changhui

How to Make Private Distributed Cardinality Estimation Practical, and
Get Differential Privacy for Free†

Changhui Hu1, Jin Li2, Zheli Liu3,‡, Xiaojie Guo3, Yu Wei3, Xuan Guang4, Grigorios Loukides5

Changyu Dong1,‡

1 School of Computing, Newcastle University, {changhui.hu,changyu.dong}@newcastle.ac.uk
2 Institute of AI and Blockchain, Guangzhou University, lijin@gzhu.edu.cn

3 College of Cyber Science, Nankai University, liuzheli@nankai.edu.cn
{xiaojie.guo,stoneboat}@mail.nankai.edu.cn

4 School of Mathematical Sciences and LPMC, Nankai University, xguang@nankai.edu.cn
5 Department of Informatics, King’s College London, grigorios.loukides@kcl.ac.uk

Abstract
Secure computation is a promising privacy enhancing tech-
nology, but it is often not scalable enough for data intensive
applications. On the other hand, the use of sketches has gained
popularity in data mining, because sketches often give rise to
highly efficient and scalable sub-linear algorithms. It is nat-
ural to ask: what if we put secure computation and sketches
together? We investigated the question and the findings are
interesting: we can get security, we can get scalability, and
somewhat unexpectedly, we can also get differential privacy –
for free. Our study started from building a secure computation
protocol based on the Flajolet-Martin (FM) sketches, for solv-
ing the Private Distributed Cardinality Estimation (PDCE)
problem, which is a fundamental problem with applications
ranging from crowd tracking to network monitoring. The state
of art protocol for PDCE (Fenske et al. CCS’17) is compu-
tationally expensive and not scalable enough to cope with
big data applications, which prompted us to design a better
protocol. Our further analysis revealed that if the cardinal-
ity to be estimated is large enough, our protocol can achieve
(ε,δ)-differential privacy automatically, without requiring any
additional manipulation of the output. The result signifies a
new approach for achieving differential privacy that departs
from the mainstream approach (i.e. adding noise to the re-
sult). Free differential privacy can be achieved because of
two reasons: secure computation minimizes information leak-
age, and the intrinsic estimation variance of the FM sketch
makes the output of our protocol uncertain. We further show
that the result is not just theoretical: the minimal cardinality
for differential privacy to hold is only 102−104 for typical
parameters.

†The full version of this paper can be found here: https://
eprint.iacr.org/2020/1576

‡Changyu Dong and Zheli Liu are the corresponding authors.

1 Introduction

Data privacy has become an increasingly acute problem, espe-
cially when the hunger for data drives large-scale collection
and (mis)use, without well-thought-out precautions in place.
The tension between data utilization and data privacy has de-
veloped into a societal challenge and led to stricter regulations,
such as HIPAA [1], GLBA [2] and GDPR [3]. The pressing
need for privacy has greatly stimulated research on secure
computation [16]. Secure computation allows collaborative
computation over private datasets held by multiple mutually
untrusted parties, without revealing any information except
what can be inferred from the output. Thus, secure computa-
tion has been regarded as one of the key privacy enhancing
technologies [4].

While many secure computation protocols have been pro-
posed to carry out various data processing tasks in a privacy
preserving fashion, their scalability is often open to doubt.
Despite the fact that the efficiency of secure computation has
been drastically improved, secure computation is still orders
of magnitude slower than computation in the clear. The over-
head might be acceptable if the data to be processed is small,
but it can be prohibitive when the data is big. Yet, the “killer”
applications of secure computation are often data-intensive,
and this has become a major impediment to the widespread
use of secure computation.

One good example is Private Distributed Cardinality Esti-
mation (PDCE). Cardinality estimation, the task of determin-
ing the number of distinct elements in the union of multiple
sets, is of particular importance in databases, data mining and
distributed systems [5, 34, 35, 62]. While the task is easy to
perform when data is in a single small database, it becomes
challenging when data is collected independently from multi-
ple sources at a high rate [48]. Naively maintaining a counter

USENIX Association 30th USENIX Security Symposium 965

https://eprint.iacr.org/2020/1576
https://eprint.iacr.org/2020/1576

at each source and summing the counters up will not work
because more often than not, there are duplicates in the data
being collected. The task is even more challenging if privacy
is needed. PDCE has numerous applications, for example:

• Scientific research and user studies. Surveys and ques-
tionnaires are commonly used in medical science, social
science and business studies to help researchers discover
interesting correlations (e.g. [52]). It is not uncommon that
several organizations independently collect data through
surveys and questionnaires over the same population. For
example, diet habits could be surveyed by researchers from
a medical institution, a government agency, and an insur-
ance company, for different projects. If pooled together,
the data would be of a much higher utility and could lead
to improved decision making. For instance, the number of
distinct individuals across all datasets having a certain diet
habit could help identifying risk factors related to chronic
diseases such as diabetes, while each individual dataset
may be too small to draw a convincing conclusion. How-
ever, the data cannot be pooled together in practice because
of privacy obligations imposed on each data collector.

• Crowd counting and tracking [61]. The task of estimat-
ing the number of individuals entering or passing by a
place is key in urban planning, surveillance, public health
study and retail analytics, to understand the effectiveness
of building and road design, the patterns of human mo-
bility, the spread of infectious diseases, and the patterns
of customer behavior. Many existing commercial systems
identify and track people though personally identifiable in-
formation (PII), such as fingerprints of mobile devices [9]
or MAC addresses of WiFi cards [47,49], collected through
a distributed network of sensors or WiFi hot-spots that
are deployed e.g. in a big shopping mall or a retail chain
across the country [57]. Usually, to obtain the estimate,
the data is transmitted to, stored and processed in a cen-
tral database. However, this has already raised widespread
privacy concerns [58, 59]. Ideally the estimate should be
obtained without the need to store or transmit PII. Also,
if published, it should not disclose information about any
specific individual.

• Network monitoring and statistics. An example is the
detection of DDoS attacks by collecting information at
an ISP’s border routers and identifying sudden increases
in the total number of distinct source IP addresses. This
detection method works because the attacker usually com-
mands many “zombies” distributed across the Internet to
send packets with randomly spoofed IP source addresses
to the victim [46]. Another example is that many websites
nowadays use Content Distribution Networks to provide
load balancing and fast access. One statistic that web mas-
ters often want to estimate is the total number, across all
replicas, of distinct visitors who accessed the website [7].
This can be reduced to the distributed cardinality estimation

problem. In both examples, privacy concerns are raised due
to the fact that IP addresses can be used to track back users,
revealing confidential information ranging from their loca-
tion to personal and behavioral traits. A second concern,
posed by the scale of the Internet, is to be able to address
the distributed cardinality estimation problem efficiently.

Driven by the need, PDCE has attracted substantial inter-
est [8, 17, 20, 23, 27, 28, 30, 38, 43, 56, 60]. The current state of
the art is a secure computation protocol proposed by Fenske
et.al. in CCS’17 [30]. Functionality and privacy-wise, the
protocol is impeccable. However, it is not scalable enough,
because it relies on expensive public key encryption and com-
putationally demanding sub-protocols such as verifiable shuf-
fling. The running time of the protocol is in the order of hours
when the cardinality is in the order of 104. The protocol can
fulfill its task for measuring the number of visitors to the Tor
network because the cardinality to be estimated is small. How-
ever, it cannot cope with mainstream big data applications,
involving million or billion sized sets, because the protocol
would require weeks or years to finish.

In the data mining community, the use of sketches has
gained popularity recently [15]. Sketches are space-efficient
data structures that summarize massive data, so that it can
be efficiently processed, stored, and queried. Sketches allow
representing data in sub-linear or constant space, and thus
can be employed to improve the efficiency and scalability
of algorithms. Sketches are lossy and do not preserve all the
information in the data they represent. Thus, sketch-based
computation returns only approximate answers. That said,
big data applications often do not require exact answers and
the parameters of sketches can often be adjusted to obtain
sufficiently accurate answers. Due to the use of sketches,
many real world systems can keep up with exponentially
increasing data (e.g. [6, 37]).
Contributions In this paper, we build and analyse a new se-
cure computation protocol based on the Flajolet-Martin (FM)
sketch [31], for solving the PDCE problem. Initially, our inten-
tion was to make PDCE more practical. The protocol fulfils
this intention very well. As expected, the protocol achieves
high security, as well as much better efficiency and scalabil-
ity than the state of the art [30]. Yet, this is not the end of
the story. In the study we also found that the combination
of secure computation and the FM sketch allows us to ob-
tain differential privacy at no extra cost. This is interesting
because differential privacy is a much desired property in
PDCE, and neither secure computation nor the FM sketch
provides it on its own. In more detail, the protocol has the
following important features:

• Highly Secure Similar to exisiting work [27,28,30,38,43],
we consider the scenario where a set of Data Parties (DPs)
collect data and want to use some untrusted Computation
Parties (CPs) to aggregate the data and estimate cardinality.

966 30th USENIX Security Symposium USENIX Association

In such a setting, the untrusted CPs are modelled as cor-
rupted and controlled by a single adversary. Unlike the vast
majority of previous work that considers only semi-honest
CPs, our protocol is developed on top of the SPDZ frame-
work [19], and thus is secure in the presence of malicious
CPs that can behave arbitrarily. For the total of d CPs, our
protocol can tolerate up to d−1 corrupted malicious CPs.
Our protocol can achieve the following security goals as
long as there exists one honest CP: (1) the adversary learns
nothing from executing the protocol except the output of
the protocol; (2) the adversary cannot affect the correctness
of the computation without being detected. We formally
prove the security of the protocol in the UC model [12].

• Efficient and scalable. We design our protocol around the
FM sketch. By using FM sketches, we can accurately esti-
mate the cardinality, while reducing the complexity of our
protocol to logarithmic (in the maximum cardinality to be
estimated). This is in contrast to the majority of the existing
protocols [8,17,20,27,28,30,38,43,56] whose complexity
is linear. Also, we reduce much of the computation needed
for the online phase by using offline pre-processing. As a
comparison, the protocol in [30] needs almost 1 hour in
LAN to estimate the cardinality of a set containing 30,000
elements; while our protocol only needs less than 50 min-
utes (in WAN) to estimate the cardinality of a set containing
1 billion elements, and the online phase running time is
only about 5 seconds.

• Offers differential privacy for free. The most interesting
finding from our study is that our protocol can achieve dif-
ferential privacy [25] for free (i.e. without the need to add
noise and/or further manipulate the output). In the security
models for secure computation, the adversary is allowed
to infer information from the output of the protocol. This
sometimes is inadequate because individuals may still be
re-identified through such inference. It is often desirable
in applications like PDCE to additionally disallow such
inference attacks by making the output from the protocol
differentially private. We proved that, given the privacy pa-
rameters (ε,δ) and FM sketch parameters, if the cardinality
to be estimated is sufficiently large, then the estimated car-
dinality output from our protocol satisfies (ε,δ)-differential
privacy. What makes the finding so interesting is that nei-
ther secure computation nor sketches provide differential
privacy on their own. However, we showed for the first
time that when we put the two together, they complement
each other by providing something the other lacks. The
intrinsic estimation variance of FM sketches now makes
the output of secure computation uncertain, thus can sub-
stitute the noise we usually need to add in order to achieve
differential privacy. Secure computation makes it possible
to do the computation without revealing anything except
the output, which means the sketches are now hidden and
any information leaked by the sketches is now concealed.

As a consequence, differential privacy can be achieved. We
further show that this is not just a theoretical result. The
lower bound of the cardinality for differential privacy to
hold is reasonably small. Given typical parameters, the
lower bound is usually only 102−104. Thus, differential
privacy can be easily satisfied in real world applications
with our protocol. The technique used in our analysis is
quite general, thus we would expect that with some modi-
fications, it could be applied to other sketch based secure
computation protocols as well. As the last remark, existing
PDCE protocols [28,30,38,43,56], achieve differential pri-
vacy by adding noise, which however incurs a cost. This is
especially true in [30], in which a large portion of the com-
putation is spent on encrypting a large number (104−105)
of noise bits and shuffling them with the data. Therefore,
free differential privacy is beneficial to the efficiency and
scalability of our protocol as well.

2 Related Work

In the literature, several PDCE protocols are also called Pri-
vate Set Union Cardinality (PSU-CA) protocols [17, 20, 23,
27, 30]. However, the original definition of PSU-CA [17]
requires the output to be the exact cardinality, while quite
a few protocols [23, 27, 30] output an estimate close to the
exact cardinality. To avoid confusion, we use the term PDCE
in this paper and regard PSU-CA as a special case (in which
the estimation error is 0). Note that not outputting the exact
cardinality is not necessarily a deficiency. When differential
privacy is required, the output anyway cannot be exact.

There are two different flavours of PDCE protocols: the
first is that the DPs collect and compute the cardinality, with-
out using CPs; the second is that the DPs only collect the
data, and the CPs compute the estimation. We call the former
DP-PDCE and the latter CP-PDCE to differentiate them. Our
protocol is a CP-PDCE protocol. One approach [17, 20] for
DP-PDCE is to reduce it to a Private Set Intersection Car-
dinality (PSI-CA) problem. The cardinality of union can be
obtained by using the inclusion-exclusion principle. However,
the inclusion-exclusion principle leads to exponential com-
plexity (in the number of sets), therefore those protocols are
limited to the two-party case. There are a few DP-PDCE [20]
and CP-PDCE [8, 27] protocols based on Bloom Filters. The
protocol in [8] is not secure, and [27] proposed a more secure
variant of the protocol. The protocol in [20], as mentioned ear-
lier, uses the inclusion-exclusion principle, thus is not scalable.
All the above protocols have computational and communi-
cation complexity linear in the maximum cardinality to be
estimated. FM sketches were used by the DP-PDCE protocol
in [23] to lower its complexity to logarithmic. However, only
a two-party protocol was given in the paper with a brief state-
ment that a multiparty protocol is feasible. The DP-PDCE
protocol in [60] also uses FM sketches. However this pro-
tocol is not secure. The protocol reveals more information

USENIX Association 30th USENIX Security Symposium 967

than the cardinality itself because the parties learn the union
sketch in the protocol. It also assumes none of the parties
collude, which is a very strong assumption. None of the afore-
mentioned protocols supports differential privacy. There are
protocols that provide differential privacy [28, 30, 38, 43, 56].
The CP-PDCE protocols in [28, 30, 38, 43] were all designed
for gathering statistics in the Tor network [22], which nat-
urally requires a high degree of privacy as the aim of Tor
is to keep users anonymous. The protocols in [28, 38, 43]
consolidate the observations of each DP into a counter, thus
cannot eliminate duplicates when the counters are aggregated
together. In [30], each DP maintains a hash-table with a public
hash function for the observations. If an observation occurs
multiple times, regardless by the same DP or by different DPs,
it will be hashed into the same bin of the hash-table and the
duplicates can be eliminated. However, in order to reduce
collisions and maintain a reasonable accuracy, the hash-table
size needs to be much larger than the maximum cardinality
to be estimated. This impacts the efficiency and scalability
of the protocol significantly. In [56], each DP represents its
observations as a bit vector, enforces differential privacy on
the vector using randomized response, and then passes the
vector to a CP who can estimate cardinality of the set union.
The estimation has a high standard deviation (in the order
of the size of the universe of the set), thus the result is not
accurate enough for many applications. All the above proto-
cols except [30] consider the semi-honest or an even weaker
adversary model, mainly for efficiency reasons, while our pro-
tocol and [30] are secure against more powerful malicious
adversaries.

There is a large body of research works on Private Data
Aggregation in which multiple data collectors (DPs) and data
aggregators (CPs) are involved in aggregating data and out-
putting some statistics. Some works consider a much weaker
security model and assume a trusted aggregator, who aggre-
gates data from the DPs in plaintext and then adds noise
before outputting the result [45, 55]. There are protocols that
consider an untrusted aggregator, e.g. for computing private
sum [14, 51, 54], or for frequency estimation over categor-
ical data [14, 29], or for computing KNN and median [44].
Sketches (e.g. Count and Count-min sketches) were used
in [44, 45] to make the protocols more efficient.

3 Preliminaries

3.1 Flajolet-Martin (FM) Sketches

We briefly review FM sketches. More details and analysis can
be found in [23, 31, 53]. An FM sketch is a probabilistic data
structure for counting the number of distinct elements in a
multi-set. The data structure is a w-bit binary vector. Let FS
denote an FM sketch, and FS[i] (0 ≤ i ≤ w− 1) denote the
ith bit in FS. An FM sketch is built using two functions:

• H : {0,1}∗→{0,1}w−1: a hash function that maps an input
uniformly to a (w−1)-bit string.

• ρ : {0,1}w−1→ [0,w−1]: a function that takes a (w−1)-
bit string as input and returns the number of trailing zeroes
in it.

Initially, all bits in FS are set to 0. To estimate the cardinality
of a multi-set S, for each element x ∈ S, we hash x and set
FS[ρ(H(x))] = 1. The quantity N, which is the number of
distinct elements in S, can be estimated using an estimator zN

that is the index of the first1 0 bit in FS, i.e. FS[zN] = 0 and
∀0≤ j < zN , FS[j] = 1. The expected value of zN is close to
log(φN), where φ = 0.77351 is a correction factor. Therefore,
N is roughly 2zN/φ. It is clear that the size of the sketch w must
be larger than log(φN), otherwise zN might not be correct. As
suggested in [31], w≥ log(N)+4 should suffice.

The standard deviation of zN is 1.12, which is too high (i.e.
an estimation using zN will typically be one binary order of
magnitude off the true cardinality). To remedy this problem,
[31] suggested to use m sketches, each with an independent
hash function. Then we can obtain m estimators zN,1, ...,zN,m,
sum them to ZN = zN,1 + . . .+ zN,m, and use the average ZN

m to
estimate the cardinality N. The standard deviation of ZN is
1.12 ·√m. Thus, the standard deviation of ZN

m is 1.12√
m , which

is much smaller. In [53], the authors suggested the following,
modified formula that can achieve better estimation accuracy:

Ñ =
2

ZN
m −2−κ· ZN

m

φ
(1)

where Ñ is the cardinality estimated from m sketches, and
κ = 1.75 is a correcting factor. In [23], it was shown that
the accuracy of the estimation can be improved by enlarging
m. This implies that the accuracy of the estimation can be
adjusted to the desired level, by choosing a suitable m.

An important property of FM sketches that we use in the de-
sign of our protocol is that they can be merged. If we have two
FM sketches FS1 and FS2 built with the same hash function,
but on different sets S1 and S2 respectively, then bit-wisely
ORing the two sketches produces a new FM sketch FS∪ that
counts the union of the two sets S1 and S2. This process is
lossless: FS∪ is exactly the same as the sketch built using
the union from the scratch. This holds also in the case of
more than two sketches. Our protocol will use this property
to union FM sketches from different DPs.

3.2 SPDZ
In this section, we briefly review the SPDZ scheme [18, 19,
40, 41] that will be used as the underlying framework for
our protocol. We will follow mostly the notations in [40, 41].
Essentially, SPDZ is a secret-sharing based multiparty compu-
tation (MPC) scheme that supports secure computation over a

1We use the most significant bit first ordering throughout the paper.

968 30th USENIX Security Symposium USENIX Association

finite field (e.g. Fp for some prime p). One notable feature of
SPDZ is its 2-phase design: there is a pre-processing phase
that produces correlated random values that are independent
of the task to be securely computed, and the pre-computed
random values will then be consumed in the online phase
to enable very efficient computation. SPDZ aims to provide
highly efficient online phase primitives such as secure addi-
tion and secure multiplication. Then high-level protocols can
be implemented on top of SPDZ by calling the online phase
primitives to compute a task expressed as an arithmetic circuit.
In addition to efficiency, another benefit that SPDZ offers is
strong security: it is UC secure against a static, active adver-
sary corrupting up to n− 1 parties, and this strong security
extends to high level protocols implemented on top of it.

On the technical side, SPDZ utilizes authenticated shares.
In SPDZ, a value x ∈ Zp in the shared form is defined as:

JxK = (x1, · · · ,xn,m
(x)
1 , · · · ,m(x)

n ,∆1, · · · ,∆n),

and each party Pi holds a tuple JxKi = (xi,m
(x)
i ,∆i) such that:

x =
n

∑
i=1

xi, m(x) =
n

∑
i=1

m(x)
i , ∆ =

n

∑
i=1

∆i.

Each value is authenticated by a MAC. In the above, ∆ is a
global MAC key and the MAC is m(x) = x ·∆. The authenticity
of x can be verified by letting each Pi compute σi = m(x)

i −
x ·∆i and broadcast σi, then check if ∑

n
i=1 σi = 0. The three

parts in the tuple JxKi are additive shares of x, the MAC and
the MAC key respectively.

In our protocols, we will explicitly use the following online
phase primitives from SPDZ:

• Jx+ yK← JxK+ JyK: given shared values JxK and JyK, com-
pute the sum. This is done locally by each party Pi by
computing Jx+ yKi = (xi + yi,m

(x)
i +m(y)

i ,∆i).

• Ja+ xK← a+ JxK: add a shared value JxK with a public
value a. To do so, P1 computes Ja+ xK1 = (x1 + a,m1 +
a ·∆1,∆1), and each other party Pi computes Ja+ xKi =
(xi,mi +a ·∆i,∆i).

• Ja · xK← a · JxK: multiply a shared value JxK with a public
value a. Each Pi computes locally Ja ·xKi = (a ·xi,a ·mi,∆i)
from JxKi.

• reveal(JxK): reveal x in a shared value JxK, each Pi broad-
casts xi in JxKi and computes x = ∑

n
i=1 xi.

• Jx ·yK← JxK · JyK: multiply two shared values. It is done by
using Beaver’s triple [10], i.e. a triple (JaK,JbK,JcK) where
a,b are random numbers in Fp and c = a ·b. The triples are
generated in the pre-processing phase. In the online phase
when computing multiplication, a fresh random triple is
used. It works by revealing (which requires broadcast) JεK
and JρK where JεK← JxK− JaK and JρK← JyK− JbK. Then

the product can be obtained as Jx ·yK← JcK+εJbK+ρJaK+
ερ.

• Output(JxK): this is used at the end of a protocol to output
the final result x. It first checks the MACs of all values
previously revealed in the protocol. If it fails, then aborts.
Otherwise, it reveals x in JxK to all parties, and checks the
MAC of x. It aborts if it fails, and it outputs x otherwise.

Our protocols will use the pre-processing protocols in
SPDZ for generating Beaver’s triples. Since pre-processing is
necessary for our protocols, we will treat the pre-processing
phase as in place implicitly and not explicitly mention calling
it, in the description of the protocols.

In SPDZ (and in many other secret-sharing MPC schemes),
since computation over shares is simple modular addition
and multiplication in a small finite field, the performance
bottleneck of online protocols is often network communica-
tion [40, 41]. Therefore, reducing the number of rounds and
number of interactions is crucial to the efficiency of the online
protocols.

3.3 Differential Privacy
Differential privacy [24] is a well-established principle that
quantifies the privacy impact on individuals, when their pri-
vate information is included in a dataset and some statistics
obtained from the dataset are released. The first definition of
differential privacy is the following:

Definition 1 (ε-differential privacy [24]). A randomized
mechanism f : D → R gives ε−differential privacy, where
ε is a positive real number, if for all data sets D1 and D2
differing in at most one element, and all R⊆ R ,

e−ε ·Pr[f (D2) ∈ R]≤ Pr[f (D1) ∈ R]≤ eε ·Pr[f (D2) ∈ R].

Definition 1 is very strong but also often renders the output
unusable, since it incurs substantial distortion to be enforced.
Therefore, (ε,δ)-differential privacy is often used:

Definition 2 ((ε,δ)-differential privacy [25]). A randomized
mechanism f : D→R gives (ε,δ)-differential privacy, where
(ε,δ) are positive real numbers, if for all data sets D1 and D2
differing in at most one element, and all R⊆ R ,

e−ε ·Pr[f (D2) ∈ R]− δ

eε
≤ Pr[f (D1) ∈ R]≤ eε ·Pr[f (D2) ∈ R]+δ.

Intuitively, (ε,δ)-differential privacy ensures that for all
adjacent D1,D2, the absolute value of the privacy loss will be
bounded by ε with a probability at least 1−δ.

3.4 Statistical Security
We briefly review the notion of statistical security [32] that
we use in our ZeroTest sub-protocol (see Section 4.5). This

USENIX Association 30th USENIX Security Symposium 969

notion requires that the views of protocol execution can be
simulated such that the distributions of real and simulated
views are statistically indistinguishable. Formally, let X and
Y be distributions with finite sample spaces V and W and
∆(X ,Y) = 1

2 ∑v∈V∪W |Pr(X = v)−Pr(Y = v)| the statistical
distance between them. We say that the distributions are sta-
tistically indistinguishable if ∆(X ,Y) ≤ negl(λ) where negl
is a negligible function and λ is some statistical security pa-
rameter. As usual, a function is negligible if for every positive
polynomial p there is an N such that for all integers n > N it
holds that negl(n)< 1

p(n) . Statistical security is information
theoretic, i.e. it holds even if the adversary has unbounded
computational power. The statistical security parameter usu-
ally can be smaller than the computational security parameter
(e.g. 40 is often used in the literature [36, 50]).

3.5 Universal Composability (UC)

We briefly review the UC framework [12] that we use to
prove the security of our protocol. Being UC secure means
that our protocol can be freely composed with other protocols
and still be secure. The UC framework is defined in terms
of comparing a real world execution and the execution in an
ideal world, in the presence of an adversary (environment).
Security in UC is defined in terms of the adversary’s inability
to distinguish whether it is interacting with the real protocol
Π, or with a simulator in the ideal world which has access to
an ideal functionality F . If so, then we say that the protocol
Π securely realizes the functionality F . Intuitively, the ideal
world is secure by definition, and a successful simulation
means that the adversary running the protocol in real world
cannot do more damage than what is allowed in the ideal
world, hence the protocol is secure.

Let the adversary be Z. In the beginning of an execution,
Z chooses inputs for all parties and gets their outputs when
the execution finishes. It also controls some corrupted parties,
which means Z will instruct what they should do during the
execution and see the communication and internal states of
them. When Z stops, it outputs a bit. Security is established
by showing the existence of a simulator S that interacts with
both F and Z. The simulator should be able to simulate the
view of the protocol that looks like what Z would see in a real
attack by playing the honest parties’ role when interacting
with Z, but without access to the input and state of the honest
parties. One significant difference in the simulation in UC and
in stand-alone environment is that Z can query the corrupted
parties during the execution (rather than just collect the views
after the execution). This means some techniques such as
rewinding cannot be used in UC proofs. For a more formal and
complete account of the UC framework, please refer to [12].

4 The PDCE Protocol

4.1 Overview
In the PDCE protocol, we have a set of n honest Data Parties
(DPs) and a set of d untrusted (up to d−1 can be malicious)
Computation Parties (CPs). The DPs are responsible for data
collection. They observe the events of interest, e.g. IP ad-
dresses of the visitors, and record them locally as a set of FM
sketches. After the data has been collected, the DPs secret-
share the sketches among the CPs, who will securely combine
them, and compute the estimator ZN of the count of distinct
values. The protocol has four phases: initialization phase, of-
fline phase, data collection phase, and data aggregation phase.
Each phase involves certain sub-protocols.

4.2 Initialization Phase
In this phase, the parties negotiate parameters to be used in
the protocol. This phase only needs to run once when setting
up the system. Firstly, all parties need to agree on a finite
field Fp. This field will be used as the basis of data repre-
sentation, secret sharing and all computation. The modulus
p is decided by three parameters: (1) λ, which is a statisti-
cal security parameter (e.g. 40); (2) τ, which determines the
size of the plaintext domain (integers between [0,2τ− 1]);
(3) M, e.g. 32768, which comes from the BGV somewhat
homomorphic encryption [11] used by SPDZ. Specifically,
the parties choose p that is a (λ+ τ)-bit prime number and M
divides p−1. Next, the parties agree on the parameters for
FM sketches. Given the accuracy and privacy requirements,
they decide m (the number of sketches to be used). Based on
the pre-knowledge of the maximum number of items that can
be observed collectively, the parties decide w (the size of each
sketch). Finally, the CPs run the setup protocol of SPDZ to
obtain the parameters and keys for SPDZ.

4.3 Offline Phase
In the offline phase, the CPs run the pre-processing protocol of
SPDZ. In addition, they also run a few other offline protocols
to generate various random values that will be used later in the
data collection and aggregation phases. The offline protocols
we use already exist in the literature, therefore we only give a
high level description of them here. The protocol details and
references can be found in the full version.

• Rand(): generates JrK, the shares of a random value r ∈R

Fp.

• Rand2(): generates JbK, the shares of a random bit b ∈R

{0,1}.

• RandExp(l): generates (JR−1K,JRK, JR2K, . . . ,JRlK), the
shares of a random number R∈R Z∗p, as well as the shares
of its ith powers (for i =−1 and 2≤ i≤ l).

970 30th USENIX Security Symposium USENIX Association

4.4 Data Collection Phase

At the beginning of this phase, the DPs choose a keyed hash
function H, a pseudorandom function PRF , and establish a
secret key sk for PRF among them. The secret key sk can
be established using an authenticated group key exchange
protocol (e.g. [39]). The PRF and the key sk will be used for
deriving hash keys, so that m independent FM sketches can be
constructed using H and different hash keys. For 1≤ j ≤ m,
the jth hash key is k j = PRF(sk, j). Then each DP maintains
m FM sketches, observes items and adds them into its FM
sketches. At the end of this phase, each DP splits its FM
sketches into secret shared form, and sends the shares to the
CPs. The protocol for data collection is shown in Protocol 1,
and the sub-protocol Share(x) is shown in Protocol 2.

Protocol 1: Data Collection
Input: Each DP’s input is sk, the shared key for the PRF
Result: The CPs obtain the shares of the FM sketches
// Initialize FM sketches

1 Each DPi initialize m FM sketches, each is w-bit
// Collect data

2 Whenever DPi observes an item o, it does the following:
// add o to sketch (see Sec. 3.1)

3 for j = 1; j ≤ m; j++ do
4 Compute l = ρ(H(k j||o));
5 Set FS j

i [l] = 1;
6 end
// Finish data collection

7 After data has been collected, each DPi does the following:
8 for j = 1; j ≤ m; j++ do
9 for l = 0; l ≤ w−1; l ++ do

10 Run Share(FS j
i [l]) with the CPs;

11 end
12 end

Protocol 2: Share(x)
Offline: CPs run JaK← Rand(), where a ∈R Fp.
Input: The DP’s input is x, the value to be shared.
Result: The CPs obtain JxK

1 CPs reveal a to DP;
2 DP computes x−a and broadcasts it to all CPs;
3 CPs obtain JxK = JaK+(x−a);

4.5 Data Aggregation Phase

This phase involves only the CPs. The CPs first merge the
shares from the DPs into m shared FM sketches such that each
slot in the sketches holds either a zero or a positive integer.
Then, they convert the integer FM sketches into binary FM
sketches. After that, they extract the estimator ZN from the
sketches, and compute the count from the estimator locally.
Merge Shares At the start of the data aggregation phase,
each CP holds the shares of all the FM sketches from all
DPs. The first step for each CP is to merge the shares of

the sketches to get the shares of a set of m (integer) FM
sketches that record the union of observations from all DPs.
As mentioned in Section 3.1, merging FM sketches can be
done by bit-wisely ORing the sketches. However, the Boolean
OR operation corresponds to multiplication of shared values.
A naive implementation of this step thus would require (n−
1) ·m ·w multiplication operations and thus (n− 1) ·m ·w
rounds of communication, where n is the number of DPs, m is
the number of FM sketches generated by each DP, and w is the
bit-size of the FM sketches. To reduce the cost, in our protocol,
we merge the shares by addition. The protocol is shown in
Protocol 3. For the l-th bit in the j-th FM sketches, the CPs
locally sum up the n shares for that bit from all DPs. At the
end, the CPs obtains the shares of m integer FM sketches such
that 0 in the integer FM sketches corresponds to 0 in binary
FM sketches, and non-zero corresponds to 1. The integer FM
sketches will be converted to binary sketches in the next step.
The only operation needed in this step is addition. Thus, no
interaction is required. Looking ahead, the next step requires
in total 2 ·m ·w rounds of interaction, thus the total cost is
much less than the naive implementation in real applications
where the number of DP is often large.

Protocol 3: MergeShares

Input: Each CPk holds JFS j
i [l]Kk

(1≤ i≤ n,1≤ j ≤ m,0≤ l ≤ w−1)
Result: JFS j

∪[l]Kk (1≤ j ≤ m,0≤ l ≤ w−1)
1 for j = 1; j ≤ m; j++ do
2 for l = 0; l ≤ w−1; l ++ do
3 JFS j

∪[l]Kk = ∑
n
i=1(JFS j

i [l]Kk);
4 end
5 end

Protocol 4: ToBinary(JFS1
∪[0]K, · · · ,JFS1

∪[w −
1]K, · · · ,JFSm

∪ [0]K, · · · ,JFSm
∪ [w−1]K)

Input: JFS j
∪[l]K (1≤ j ≤ m,0≤ l ≤ w−1), shares of the m

integer FM sketches.
Result: JBFS j

∪[l]K (1≤ j ≤ m,0≤ l ≤ w−1), shares of the
m converted binary FM sketches.

1 for j = 1; j ≤ m; j++ do
2 for l = 0; l ≤ w−1; l ++ do
3 JBFS j

∪[l]K = ZeroTest(JFS j
∪[l]K);

4 end
5 end

Convert to Binary Sketches As shown in Protocol 4, the
second step is to covert each FS j

∪ back to the normal binary
FM sketches2, so that we can later extract the estimator from
them. This is done by running a zero test protocol among the
CPs on each slot that sets the slot to 0 if the value stored in it
is 0, or to 1 otherwise.

Here we use the protocol from [42]. The protocol is based
on the following idea: to test whether a is 0 or not, we first

2To clarify, here binary means {0,1} in Fp, not {0,1} in F2

USENIX Association 30th USENIX Security Symposium 971

Protocol 5: ZeroTest(JaK)
Offline:

for i = 0, · · · , l−2, where l is the bit length of p do
JriK← Rand2();

end
JrK← ∑

l−2
i=0 2l−2−iJriK;

// interpolate the lookup polynomial
(τ,β0, · · · ,βτ)← interpolate();

Input: JaK, where a is a τ-bit integer.
Result: JbK, where b = 0 if a = 0, b = 1 otherwise

1 JmK = JrK+ JaK;
2 Reveal JmK;
3 J1+hK = 1+∑

l−τ

i=l−1(JriK+mi−2JriK ·mi);
4 JbK = Lookup(J1+hK,τ,β0, · · · ,βτ)

Protocol 6: Lookup(JxK, `,β0, . . . ,β`)

Offline: (JR−1K,JRK,JR2K, · · ·JR`K)← RandExp(`);
Input: JxK, where x is an integer; ` is the degree of the

lookup polynomial f (·); β0, . . . ,β` are the coefficient
of f (·).

Result: JyK, where y = f (x).
1 JaK = JR−1K · JxK;
2 Reveal JaK;
3 for i = 2, · · · , ` do
4 JxiK = ai · JRiK
5 end
6 JbK = ∑

`
i=0 βi · JxiK

compute r+a where r is a random integer, and then compute
the Hamming distance h between r+a and r. Obviously, if
a= 0, then h= 0; otherwise h is a small integer in [1,τ], where
τ is the bit length of the plaintext. As h is small, it is feasible
to use a lookup function that is a polynomial f (·) such that
f (0) = 0 and f (x) = 1 for all other x ∈ [1,τ]. There is a small
technicality that f (0) cannot be evaluated without leaking
information. To see that, note that in the first line of Protocol
6, if x= 0 then a= 0, and revealing a will reveal whether x is 0.
Thus in line 3 of Protocol 5, 1 is added to h so that the input to
the polynomial will never be 0. The lookup polynomial will be
interpolated accordingly (e.g. using Lagrange Interpolation),
and evaluating f at h+1 will output 0 if h is 0 or 1 otherwise.
The ZeroTest protocol is shown in Protocol 5, and the sub-
protocol Lookup for evaluating the lookup function is shown
in Protocol 6 (both are from [42]).

Extract Estimator Recall that given an FM sketch, one can
extract zN , i.e. the index of the first 0 bit in the sketch. When
using m FM sketches, the sum ZN = ∑

m
i=1 zN,i will be used

to estimate the number of distinct observed items as Ñ =
2

ZN
m −2−κ· ZN

m
φ

(see Section 3.1). The formula is deterministic

and invertible, therefore revealing Ñ and revealing ZN are
essentially equivalent. Because of this, we can let the protocol
output ZN rather than Ñ without compromising correctness
or security. With ZN , each CP can locally compute Ñ.

ZN can be extracted using the following simple idea: firstly,

Protocol 7: ExtractZ(JBFS1
∪[0]K, · · · ,JBFS1

∪[w −
1]K, · · · , JBFSm

∪ [0]K, · · · ,JBFSm
∪ [w−1]K)

Input: JBFS1
∪[0]K, · · · ,JBFS1

∪[w−1]K, · · · ,JBFSm
∪ [0]K, · · · ,

JBFSm
∪ [w−1]K, the shares of the m binary FM

sketches.
Result: ZN , the estimator extracted from the sketches

1 JZNK = 0;
2 for i = 1; i≤ m; i++ do
3 JZNK = JZNK+ JBFSi

∪[0]K;
4 end
5 for l = 1; l ≤ w−1; l ++ do
6 for i = 1; i≤ m; i++ do
7 JBFSi

∪[l]K = JBFSi
∪[l−1]K · JBFSi

∪[l]K;
8 JZNK = JZNK+ JBFSi

∪[l]K;
9 end

10 end
11 return ZN ← Output(JZNK);

for each sketch, set all bits after the first 0 bit to 0, then sum up
all bits in the sketch, and the result is the estimator zN,i; then
ZN can be obtained by summing up all zN,i’s. This is essentially
what we do in Protocol 7. To set bits to 0 after the first 0 bit,
the protocol does the following: for each sketch FSi

∪, it sets
FSi
∪[l] = FSi

∪[l− 1] · FSi
∪[l] sequentially for 1 ≤ l ≤ w− 1.

By doing so, all bits before and including the first 0 bit remain
unchanged, and all bits after will be set to 0 due to the chained
multiplication.

Although Protocol 7 is simple, it requires w− 1 rounds
because the multiplication in each round is dependent on the
output of the previous round. To improve the round efficiency,
we designed another protocol (Protocol 10) that only requires
2 log(w) rounds. The protocol can be found in Appendix A.
As we will see later in Section 6, the performance of Protocol
10 is better than Protocol 7 when the network bandwidth is
limited.
Estimate the Cardinality After extracting ZN , each CP com-
putes the estimated cardinality locally with the formula Ñ =

2
ZN
m −2−k· ZN

m
φ

, as explained in Section 3.1.

5 Security Analysis

5.1 Protocol Security
We prove the security of the protocol in Section 4 in the
Universally Composable framework [13]. This provides a
strong notion of security and allows our protocol to serve as a
component of a larger system without losing its security prop-
erties. We adopt a very strong adversary model in which the
untrusted CPs are modelled as corrupted by a single adversary
that is malicious, i.e. can behave arbitrarily. The adversary can
corrupt all but one CPs statically. Informally, with only one
honest CP, the security properties of the protocol are: (1) the
adversary learns nothing from executing the protocol except
the differentially private output of the protocol; (2) the adver-

972 30th USENIX Security Symposium USENIX Association

sary cannot affect the correctness of the computation without
being detected. The security properties we considered in this
paper are confidentiality and correctness. We leave out other
properties such as robustness. In essence, the protocol will
terminate if any party aborts and no result will be computed.
This limitation is inherent in the underlying MPC framework
we use, namely SPDZ. That said, robust MPC is an active
research topic and our protocol can be migrated to a robust
MPC framework when it is available.

Our adversary model is quite similar to that in [30], except
that (1) in our model, the DPs are honest but in [30] they allow
DPs to be corrupted adaptively; (2) In our model, malicious
CPs cannot tamper with the data and the result, while in [30]
a malicious CP can insert elements into the hashtable and
change the result (and this cannot be prevented unless their
protocol is significantly changed). Regarding whether the DPs
should be assumed honest or not, we have the following re-
marks: (1) We model the DPs as honest mainly because, like
many other differential privacy mechanisms, we need to keep
the randomness, namely the PRF key, private from the adver-
sary. Compromising this key will break the differential privacy
guarantee. On the other hand, although [30] allows DPs to be
corrupted, once a DP is corrupted, differential privacy guaran-
tee is broken as well. This is because the adversary can now
see the raw data collected by the corrupted DP. If the element
x that differentiates D1 and D2 happens to be observed by the
adversary, differential privacy is broken. (2) After corrupting
a DP, [30] can prevent the adversary from seeing the corrupted
DPs’ data before corruption. This is something our protocol
cannot achieve now. However, firstly [30] is used for Tor, and
they consider law enforcement forcing DPs to reveal data col-
lected a threat, but this is not common in other applications;
secondly, we can easily achieve it, by secret-sharing the FM
sketches when initializing them, and update them obliviously.
This only adds one round of communication between DPs and
CPs, and negligible computation. (3) Our DP side computa-
tion is cheap (hashing) and requires only small storage (a few
MB for thousands of FM sketches and one secret key). Thus,
it is relatively easy to secure DPs, e.g. using trusted hardware
like Intel SGX. Spending reasonable efforts on securing DPs
in exchange for much less computation on CPs seems to be a
worthy trade-off.

Note, as in many proofs, we prove the security modularly
in the so called F -hybrid model. That is, we can replace an
already proven secure sub-protocol with an ideal functionality.
Theorem 5 states two ideal functionalities; FSPDZ and Foffline.
The first is the ideal functionality for the SPDZ protocol,
whose security has been proven in [19, 41]. The second is
the ideal functionality for our offline protocols. The offline
protocols are from the literature, therefore we also separate
them as an ideal functionality. The details of Foffline as well
as the full security proof (under the SPDZ framework) can
be found in the full version. Then, the security properties of
the online protocol that does the cardinality estimation are

captured by an ideal functionality in Figure 1. We have the
following theorem:

Theorem 1. In the FSPDZ, Foffline-hybrid model, the protocol
in Section 4 realizes FPDCE with statistical security against
any malicious adversary who statically corrupts up to d−1
CPs.

The proof of Theorem 1 can be found in the full version.

Functionality FPDCE

The functionality maintains a dictionary, Val, to keep track of the
authenticated values. Entries of Val lie in the (fixed) finite field Fp

and cannot be changed, for simplicity.
Abort: On receiving Abort from the adversary, send ⊥ to all
parties and terminate.
Share: On receiving (share,x, id) from DP, and (share, id) from
all CPs, set Val[id]← x.
Go: After receiving (go) from all parties, ignore messages from
DP and the following methods can be called from now on.
MergeShare: On receiving (mergeshare, idFS, idFS∪) from all
CPs, where idFS is a (mw×n) matrix and idFS∪ is an mw vector,
all contain some ids, set for 1≤ i≤ mw,
Val[idFS∪

i]← ∑
n
j=1 Val[idFS

i, j].
Lookup: On receiving (lookup, idx, idy, `,β0, · · · ,β`) from all
CPs, check that `,β0, · · · ,β` defines a lookup polynomial as
expected, then set Val[idy]← ∑

`
i=0 βi · (Val[idx])

i.
ZeroTest: On receiving (zerotest, ida, idb) from all CPs, if
Val[ida] = 0, set Val[idb]← 0, otherwise set Val[idb]← 1.
ExtractZ: On receiving (extractZ, id1

0 , · · · , id1
w−1, id

2
0 , · · · ,

id2
w−1, · · · , idm

0 , · · · , idm
w−1, idZN) from all CPs, count from the

beginning the number of continuous 1 in (Val[idi
0], · · · ,

Val[idi
w−1]) to get zN,i, then compute ZN = ∑

m
i=1 zN,i, set

Val[idZN]← ZN .

Figure 1: Ideal Functionality for the PDCE Protocol

5.2 Differential Privacy

In this section, we will show that if the cardinality to be es-
timated by the FM sketches is large enough (larger than a
threshold N0), then our protocol in Section 4 satisfies (ε,δ)-
differential privacy automatically, without requiring any fur-
ther manipulation of the output. We noticed that in [21], the
authors conclude that cardinality estimation by sketches does
not preserve privacy. However, our positive result does not
contradict their negative result. The reason is that in their
model, the adversary can access the sketches and the final
estimation result; while in our model, since MPC is used,
the adversary can only access the final estimation result. The
sketches are secret-shared in the protocol and are never re-
vealed (if at least one CPs is honest). In fact, the mitigation
strategies proposed in [21] are about restricting the adver-
sary’s access to the sketches, which is in line with what we do.

USENIX Association 30th USENIX Security Symposium 973

0

0.002

0.004

0.006

0.008

0.01

0.012
F(D1)

F(D2)

F(D1)

F(D2)

F(D1)

F(D2)

0

0.002

0.004

0.006

0.008

0.01

0.012
F(D1)

F(D2)

F(D1)

F(D2)

F(D1)

F(D2)

0

0.002

0.004

0.006

0.008

0.01

0.012
F(D1)

F(D2)

F(D1)

F(D2)

F(D1)

F(D2)

Figure 2: Results from the Monte Carlo Simulations

5.2.1 Intuition

The notion of (ε,δ)-differential privacy requires that the out-
puts from a randomized mechanism on two neighboring
datasets should be close enough with high probability.

To start with, our protocol can be viewed as a randomized
mechanism F : 2U→Z. Let U be the universe of elements and
D⊆U a set comprised of the union of the observations of all n
DPs. F takes D as input, internally builds m FM sketches of D,
and outputs the random variable ZN = zN,1 + · · ·+ zN,m. Note
that F is a randomized mechanism because a randomly chosen
key is used in our protocol and is renegotiated in each run.
The random key is used to derive the hash keys for each FM
sketch. The use of hash keys also ensures the independence
of zN,i’s, albeit they might be generated on correlated data. To
see that, for H that is modeled as a perfect random function,
Pr[H(ki||x) = y] is uniform and independent of Pr[H(k j||x) =
y′]. The independence of the hash output then implies zN,i’s
are independent. Also, as we mentioned in Section 3.1, FM
sketches can eliminate duplicates in data because the same
element will end up with the same hash value when hashed
under the same hash key, thus multiple copies of the same
element will be counted as one. Although data is collected
by individual DPs, we can think the final result is about the
union set of the elements from all DPs. We can model F just
with one input D that is the union of the n sets from the DPs.

The output ZN from F is a random variable which can take
larger values as the cardinality of D increases. Intuitively, as D
becomes larger, each element in D has a smaller contribution
to ZN . Eventually, the contribution becomes so insignificant
and each element’s presence will have almost no effect on the
distribution of ZN . In other words, when D is large enough, the
addition or removal of an element from D will cause almost
no change to the distribution of ZN , i.e., differential privacy
can be achieved. To illustrate the intuition, we conducted three
Monte Carlo simulations. The results are shown in Fig. 2. In
each simulation, two sets D1 and D2 were used, such that D1
had N elements and D2 was obtained from D1 by adding one
extra element. We set N = 99, N = 999 and N = 19999 in the
three simulations. Each simulation had 10 million rounds. In
each round, we generated a random set of m hash keys, built
m sketches for D1 and m sketches for D2, and then computed
F(Di) from the sketches. Fig. 2 shows the distributions of
F(D1) and F(D2), each obtained from 10 million samples. As
can be seen, when N becomes larger, the two curves become
closer.

Note that our protocol is designed for applications that

require one-off or periodical release of statistics (e.g. the
number of distinct IP addresses per hour). In each run of our
protocol, fresh randomness is introduced by renegotiating the
PRF key, so that the sketches are independent of those in
the previous run. The protocol does not use sketches from
previous runs, and only one query is answered in each run
(i.e. the output of each run is ZN). The protocol does not
support correlated queries, e.g. how many new elements have
been added since the last estimation. If our protocol is used
for answering correlated queries, differential privacy may no
longer hold because correlated queries leak more information.

In the following, we will start by showing that when using
a single FM sketch, we can find an N0 such that the protocol
satisfies (ε,δ)-differential privacy whenever the input set to
the protocol has cardinality at least N0. Then the bound N0 for
(ε,δ)-differential privacy to hold in the m FM sketches case
can be obtained by using the composition theorems of differ-
ential privacy [26]. The bound obtained from the composition
theorems can be refined, to get a much smaller (better) N0.

5.2.2 Finding N0: Single FM Sketch3

Let zN denote the discrete random variable extracted from
an FM sketch when the input cardinality is N. We first work
out the probability mass function (PMF) of zN . In [31], the
complementary cumulative distribution function of zN was
given as:

qN,k = Pr(zN ≥ k) =
2k

∑
j=0

(−1)v(j)e−
j·N
2k

where 0≤ k ≤ w−1 and v(j) denotes the number of ones in
the binary representation of j. Then, we can derive the PMF
of zN as:

pN,k = Pr(zN = k) = qN,k−qN,k+1

The above, after some derivation, gives us:

pN,k =

{
e−

N
2 if k = 0

e−
N

2k+1 ∏
k−1
j=0(1− e−

N
2 j+1) if k > 0

(2)

We want (ε,δ)-differential privacy to hold for any suffi-
ciently large datasets D1 and D2 differing in at most one
element. When using a single FM sketch in our protocol, it is
equivalent to say that we want to find an N0 such that for all
N ≥ N0 and for all k, the following holds:{

Pr[zN = k]≤ eε ·Pr[zN+1 = k]+δ

Pr[zN+1 = k]≤ eε ·Pr[zN = k]+δ

which is equivalent to:

e−ε · pN+1,k−
δ

eε
≤ pN,k ≤ eε · pN+1,k +δ.

It is easy to see that the above holds, if at each k either of
the following two conditions is true: (1) e−ε ≤ pN,k

pN+1,k
≤ eε

3More details and proofs can be found in the full version.

974 30th USENIX Security Symposium USENIX Association

(ε-differential privacy holds at those k), or (2) pN,k ≤ δ and
pN+1,k ≤ δ (the probability of getting to this k is sufficiently
small). When condition (1) is true, (ε,δ)-differential privacy
holds because

e−ε · pN+1,k−
δ

eε
< e−ε · pN+1,k≤ pN,k≤ eε · pN+1,k < eε · pN+1,k+δ

When condition (2) is true, (ε,δ)-differential privacy holds
because

e−ε · pN+1,k−
δ

eε
< 0≤ pN,k ≤ δ≤ eε · pN+1,k +δ

To start with, we prove the following lemma:

Lemma 1. pN,k
pN+1,k

decreases monotonically in k.

Looking ahead, based on Lemma 1, our strategy for finding
N0 consists of two steps:

1. Find N1 such that for all N ≥ N1, there exists kmin, and (i)
for all k≥ kmin, pN,k

pN+1,k
≤ eε and (ii) for all k < kmin, pN,k ≤ δ

and pN+1,k ≤ δ.

2. Find N2 such that for all N ≥ N2, there exists kmax, and
(i) for all k ≤ kmax, pN,k

pN+1,k
≥ e−ε and (ii) for all k > kmax,

pN,k ≤ δ and pN+1,k ≤ δ.

Then, we take N0 = max(N1,N2). Clearly, for all N ≥ N0,
we have: (i) e−ε ≤ pN,k

pN+1,k
≤ eε for kmin ≤ k ≤ kmax, and (ii)

pN,k ≤ δ and pN+1,k ≤ δ for k < kmin or k > kmax. Thus,(ε,δ)-
differential privacy holds for all N ≥ N0 and all k (see Figure
3).

pN+1,k
pN,k

kmin
<latexit sha1_base64="ZoAxIAZS/9ieaMyEUX1gxKkbMyw=">AAAB7nicbZDNSgMxFIVvqtZarVa7dDNYBBdSZupClwU3LivYH2iHkkkzbZgkMyQZYRj6EG5cKOLW53HnwwimPwttPRD4OOdecu8NEs60cd0vVNja3inulvbK+weVw6Pq8UlXx6kitENiHqt+gDXlTNKOYYbTfqIoFgGnvSC6nee9R6o0i+WDyRLqCzyRLGQEG2v1olEumJyNqnW34S7kbIK3gnoLDWvflWLWHlU/h+OYpIJKQzjWeuC5ifFzrAwjnM7Kw1TTBJMIT+jAosSCaj9fjDtzzq0zdsJY2SeNs3B/d+RYaJ2JwFYKbKZ6PZub/2WD1IQ3fs5kkhoqyfKjMOWOiZ357s6YKUoMzyxgopid1SFTrDAx9kJlewRvfeVN6DYb3lWjee/VW5ewVAlO4QwuwINraMEdtKEDBCJ4ghd4RQl6Rm/ofVlaQKueGvwR+vgBotGR6g==</latexit>

kmax
<latexit sha1_base64="mFnb7wk61NVBhBEj0u7jkU0w0H4=">AAAB7nicbZDLSgMxFIZPvNRarVa7dDNYBBdSZupClwU3LivYC7RDyaSZNkySGZKMOAx9CDcuFHHr87jzYQTTy0Jbfwh8/P855JwTJJxp47pfaGNza7uwU9wt7e2XDw4rR8cdHaeK0DaJeax6AdaUM0nbhhlOe4miWAScdoPoZpZ3H6jSLJb3JkuoL/BYspARbKzVjYa5wI/TYaXm1t25nHXwllBrokH1u1zIWsPK52AUk1RQaQjHWvc9NzF+jpVhhNNpaZBqmmAS4THtW5RYUO3n83Gnzpl1Rk4YK/ukcebu744cC60zEdhKgc1Er2Yz87+sn5rw2s+ZTFJDJVl8FKbcMbEz290ZMUWJ4ZkFTBSzszpkghUmxl6oZI/gra68Dp1G3busN+68WvMCFirCCZzCOXhwBU24hRa0gUAET/ACryhBz+gNvS9KN9Cypwp/hD5+AKXTkew=</latexit>

kmin
<latexit sha1_base64="ZoAxIAZS/9ieaMyEUX1gxKkbMyw=">AAAB7nicbZDNSgMxFIVvqtZarVa7dDNYBBdSZupClwU3LivYH2iHkkkzbZgkMyQZYRj6EG5cKOLW53HnwwimPwttPRD4OOdecu8NEs60cd0vVNja3inulvbK+weVw6Pq8UlXx6kitENiHqt+gDXlTNKOYYbTfqIoFgGnvSC6nee9R6o0i+WDyRLqCzyRLGQEG2v1olEumJyNqnW34S7kbIK3gnoLDWvflWLWHlU/h+OYpIJKQzjWeuC5ifFzrAwjnM7Kw1TTBJMIT+jAosSCaj9fjDtzzq0zdsJY2SeNs3B/d+RYaJ2JwFYKbKZ6PZub/2WD1IQ3fs5kkhoqyfKjMOWOiZ357s6YKUoMzyxgopid1SFTrDAx9kJlewRvfeVN6DYb3lWjee/VW5ewVAlO4QwuwINraMEdtKEDBCJ4ghd4RQl6Rm/ofVlaQKueGvwR+vgBotGR6g==</latexit>

kmax
<latexit sha1_base64="mFnb7wk61NVBhBEj0u7jkU0w0H4=">AAAB7nicbZDLSgMxFIZPvNRarVa7dDNYBBdSZupClwU3LivYC7RDyaSZNkySGZKMOAx9CDcuFHHr87jzYQTTy0Jbfwh8/P855JwTJJxp47pfaGNza7uwU9wt7e2XDw4rR8cdHaeK0DaJeax6AdaUM0nbhhlOe4miWAScdoPoZpZ3H6jSLJb3JkuoL/BYspARbKzVjYa5wI/TYaXm1t25nHXwllBrokH1u1zIWsPK52AUk1RQaQjHWvc9NzF+jpVhhNNpaZBqmmAS4THtW5RYUO3n83Gnzpl1Rk4YK/ukcebu744cC60zEdhKgc1Er2Yz87+sn5rw2s+ZTFJDJVl8FKbcMbEz290ZMUWJ4ZkFTBSzszpkghUmxl6oZI/gra68Dp1G3busN+68WvMCFirCCZzCOXhwBU24hRa0gUAET/ACryhBz+gNvS9KN9Cypwp/hD5+AKXTkew=</latexit>

e✏
<latexit sha1_base64="FYGHoLa8LOJK392It3TlZvQNoPw=">AAAB83icbVC7SgNBFJ31GeMrainIYBAsJOzGQjsDNpYJmAdkY5id3E2GzM4sM7NCWFL6CzYWitha2Pkddn6DfoSTR6GJBy4czrmXe+8JYs60cd1PZ2FxaXllNbOWXd/Y3NrO7ezWtEwUhSqVXKpGQDRwJqBqmOHQiBWQKOBQD/qXI79+C0ozKa7NIIZWRLqChYwSYyUfblIfYs24FMN2Lu8W3DHwPPGmJH/x9nV38F75LrdzH35H0iQCYSgnWjc9NzatlCjDKIdh1k80xIT2SRealgoSgW6l45uH+MgqHRxKZUsYPFZ/T6Qk0noQBbYzIqanZ72R+J/XTEx43kqZiBMDgk4WhQnHRuJRALjDFFDDB5YQqpi9FdMeUYQaG1PWhuDNvjxPasWCd1ooVrx86QRNkEH76BAdIw+doRK6QmVURRTF6B49oicncR6cZ+dl0rrgTGf20B84rz+F2JZh</latexit>

e�✏
<latexit sha1_base64="QKxpY98iOXXILPOv2JFDk1GCnIY=">AAAB9HicbVC7SgNBFJ2NrxhfUUtBBoNgoWE3FtoZsLFMwDwgWcPs5G4yZHZ2nZkNhCWl32BjoYitYOd32PkN+hFOHoUmHrhwOOde7r3HizhT2rY/rdTC4tLySno1s7a+sbmV3d6pqjCWFCo05KGse0QBZwIqmmkO9UgCCTwONa93OfJrfZCKheJaDyJwA9IRzGeUaCO5cJOcNCFSjIdi2Mrm7Lw9Bp4nzpTkLt6+7vbfy9+lVvaj2Q5pHIDQlBOlGo4daTchUjPKYZhpxgoiQnukAw1DBQlAucn46CE+NEob+6E0JTQeq78nEhIoNQg80xkQ3VWz3kj8z2vE2j93EyaiWIOgk0V+zLEO8SgB3GYSqOYDQwiVzNyKaZdIQrXJKWNCcGZfnifVQt45zRfKTq54jCZIoz10gI6Qg85QEV2hEqogim7RPXpET1bferCerZdJa8qazuyiP7BefwDx2ZaY</latexit>

pN,k

pN+1,k
<latexit sha1_base64="ys7OdaDV039wfADljuSuPpYl0sc=">AAACKHicdVDLSgMxFM34rPVVdSlIsAiCpczUhe4sdONKKtgHdErJpJk2NPMguSMMQz/Cj3Djr7hRUaRbP8OFmGm70FYP3MvhnHtJ7nFCwRWY5shYWFxaXlnNrGXXNza3tnM7u3UVRJKyGg1EIJsOUUxwn9WAg2DNUDLiOYI1nEEl9Ru3TCoe+DcQh6ztkZ7PXU4JaKmTu7BdSWgSdhJbUclDmHaIBcNXhcFw+J93YqVuJ5c3i+YYeJ5YU5IvH3xWvuy752on92J3Axp5zAcqiFItywyhnRAJnAo2zNqRYiGhA9JjLU194jHVTsaHDvGRVrrYDaQuH/BY/bmREE+p2HP0pEegr2a9VPzLa0XgnrcT7ocRMJ9OHnIjgSHAaWq4yyWjIGJNiA5B/xXTPtHJgc42q0OwZk+eJ/VS0Totlq6tfLmAJsigfXSIjpGFzlAZXaIqqiGK7tEjekVvxoPxZLwbo8nogjHd2UO/YHx8A/U2rK0=</latexit>

Probability
<latexit sha1_base64="bDek5gCledlj/X7qZhvUvYz00eY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgQUpSD3osePFYwX5AG8pmu2mXbnbD7kQIoT/DiwdFvPprvPlv3LY5aOuDgcd7M8zMCxPBDXret1Pa2Nza3invVvb2Dw6PqscnHaNSTVmbKqF0LySGCS5ZGzkK1ks0I3EoWDec3s397hPThiv5iFnCgpiMJY84JWilfkurkIRccMyG1ZpX9xZw14lfkBoUaA2rX4ORomnMJFJBjOn7XoJBTjRyKtisMkgNSwidkjHrWypJzEyQL06euRdWGbmR0rYkugv190ROYmOyOLSdMcGJWfXm4n9eP8XoNsi5TFJkki4XRalwUbnz/90R14yiyCwhVHN7q0snRBOKNqWKDcFffXmddBp1/7reeGjUmldFHGU4g3O4BB9uoAn30II2UFDwDK/w5qDz4rw7H8vWklPMnMIfOJ8/hU2RVQ==</latexit>

e�✏ pN,k

pN+1,k
 e✏

<latexit sha1_base64="ovXUo6L8rwg0PN/lOJkbYiDyxd0=">AAACSXicdVBNaxsxENU6aeO4H3HaY3IQMYXSD7PrHtqjoZecQgJxYvBut1p5NlGs1QppNmCW/XWFXnrLrZD+g156aAg5RWub0MbtgMTjvZk30ku0FBZ9/7vXWFl98HCtud569PjJ04325rMjmxeGw4DnMjfDhFmQQsEABUoYagMsSyQcJ5OPtX58DsaKXB3iVEOUsRMlUsEZOipuf4ZP5dsQtBUyV1UogYapYbzUcRlaboTGxY1Tp+29mVTV/7TXQa3WFs7zzjJud/yuPyu6DIIF6PS3v1zunl382I/bF+E450UGCrlk1o4CX2NUMoOCS6haYWFBMz5hJzByULEMbFTOkqjoC8eMaZobdxTSGfvnRMkya6dZ4jozhqf2vlaT/9JGBaYfolIoXSAoPl+UFpJiTutY6VgY4CinDjAXinsr5afMJYku/JYLIbj/5WVw1OsG77q9g6DTf0Xm1SRbZIe8JAF5T/pkl+yTAeHkK/lJfpMr75v3y7v2buatDW8x85z8VY2VW2HDueQ=</latexit>

pN,k �
<latexit sha1_base64="/lsF9QBhj4JQJhxjZGyik2xv9FU=">AAACDXicbVDLSgMxFM3UV62vqrhyE6yCiJSZulBwU3DjSirYB3RKyaS3bWjmQXJHKEN/wI2/IkgXirh1785f8CtMHwttPZDcwzn3ktzjRVJotO0vK7WwuLS8kl7NrK1vbG5lt3cqOowVhzIPZahqHtMgRQBlFCihFilgvieh6vWuRn71HpQWYXCH/QgaPusEoi04QyM1s4dRM3E1VyLC6Y19CfTmtDdwTXVbIJE1szk7b49B54kzJbli5nJvqL+fS83sp9sKeexDgFwyreuOHWEjYQoFlzDIuLGGiPEe60Dd0ID5oBvJeJsBPTJKi7ZDZU6AdKz+nkiYr3Xf90ynz7CrZ72R+J9Xj7F90UhEEMUIAZ881I4lxZCOoqEtoYCj7BvCTBbmr5R3mWIcTYAZE4Izu/I8qRTyzlm+cOvkiidkgjTZJwfkmDjknBTJNSmRMuHkgTyRF/JqPVpD6816n7SmrOnMLvkD6+MHxaufkQ==</latexit>

pN,k �
<latexit sha1_base64="/lsF9QBhj4JQJhxjZGyik2xv9FU=">AAACDXicbVDLSgMxFM3UV62vqrhyE6yCiJSZulBwU3DjSirYB3RKyaS3bWjmQXJHKEN/wI2/IkgXirh1785f8CtMHwttPZDcwzn3ktzjRVJotO0vK7WwuLS8kl7NrK1vbG5lt3cqOowVhzIPZahqHtMgRQBlFCihFilgvieh6vWuRn71HpQWYXCH/QgaPusEoi04QyM1s4dRM3E1VyLC6Y19CfTmtDdwTXVbIJE1szk7b49B54kzJbli5nJvqL+fS83sp9sKeexDgFwyreuOHWEjYQoFlzDIuLGGiPEe60Dd0ID5oBvJeJsBPTJKi7ZDZU6AdKz+nkiYr3Xf90ynz7CrZ72R+J9Xj7F90UhEEMUIAZ881I4lxZCOoqEtoYCj7BvCTBbmr5R3mWIcTYAZE4Izu/I8qRTyzlm+cOvkiidkgjTZJwfkmDjknBTJNSmRMuHkgTyRF/JqPVpD6816n7SmrOnMLvkD6+MHxaufkQ==</latexit>

pN+1,k �
<latexit sha1_base64="lZ0SxrBoIgFuonTc/WgCsO6JjBE=">AAACD3icbZDLSgMxFIYz9VbrrSqu3ASLIiplpi4U3BTcuJIK9gKdUjLpaRuauZCcEcrQN3DjqyjiQhG3bt35Cj6F6WWh1gMJH/9/Dsn5vUgKjbb9aaVmZufmF9KLmaXlldW17PpGRYex4lDmoQxVzWMapAigjAIl1CIFzPckVL3e+dCv3oDSIgyusR9Bw2edQLQFZ2ikZnYvaiau5kpEOLmxL4FeHjpHvYFryG2BRNbM5uy8PSo6Dc4EcsXM2daj/nooNbMfbivksQ8Bcsm0rjt2hI2EKRRcwiDjxhoixnusA3WDAfNBN5LRPgO6a5QWbYfKnADpSP05kTBf677vmU6fYVf/9Ybif149xvZpIxFBFCMEfPxQO5YUQzoMh7aEAo6yb4CZNMxfKe8yxTiaCDMmBOfvytNQKeSd43zhyskVD8i40mSb7JB94pATUiQXpETKhJNbck+eyYt1Zz1Zr9bbuDVlTWY2ya+y3r8Bs3OgAQ==</latexit>

pN+1,k �
<latexit sha1_base64="lZ0SxrBoIgFuonTc/WgCsO6JjBE=">AAACD3icbZDLSgMxFIYz9VbrrSqu3ASLIiplpi4U3BTcuJIK9gKdUjLpaRuauZCcEcrQN3DjqyjiQhG3bt35Cj6F6WWh1gMJH/9/Dsn5vUgKjbb9aaVmZufmF9KLmaXlldW17PpGRYex4lDmoQxVzWMapAigjAIl1CIFzPckVL3e+dCv3oDSIgyusR9Bw2edQLQFZ2ikZnYvaiau5kpEOLmxL4FeHjpHvYFryG2BRNbM5uy8PSo6Dc4EcsXM2daj/nooNbMfbivksQ8Bcsm0rjt2hI2EKRRcwiDjxhoixnusA3WDAfNBN5LRPgO6a5QWbYfKnADpSP05kTBf677vmU6fYVf/9Ybif149xvZpIxFBFCMEfPxQO5YUQzoMh7aEAo6yb4CZNMxfKe8yxTiaCDMmBOfvytNQKeSd43zhyskVD8i40mSb7JB94pATUiQXpETKhJNbck+eyYt1Zz1Zr9bbuDVlTWY2ya+y3r8Bs3OgAQ==</latexit>

Figure 3: kmin and kmax

Finding kmin and N1 We first show the existence of kmin:

Lemma 2. Let kmin = max(dlog2
1
ε
e− 1,0). For any ε > 0

and any k ≥ kmin, it holds that pN,k
pN+1,k

≤ eε.

Lemma 2 tells us that kmin always exists for any ε > 0,
and that it is independent of N. Next we will show that the
increase of N can eventually make pN,k ≤ δ and pN+1,k ≤ δ for
all k < kmin. First, we prove the following lemma:

Lemma 3. For all kmin > 0, Pr[zN < kmin] decreases mono-
tonically in N, and limN→∞ Pr[zN < kmin] = 0.

Now we are ready to state the following theorem:

Theorem 2. Let kmin = max(dlog2
1
ε
e− 1,0) and N1 be the

smallest positive integer such that 1−qN1 ,kmin ≤ δ. Then, for
all N ≥N1, it holds that pN,k ≤ δ and pN+1,k ≤ δ when k < kmin,
and pN,k

pN+1,k
≤ eε when k ≥ kmin.

Finding kmax and N2 We now show the existence of kmax.
Note that unlike kmin, kmax is a value that is dependant on N.

Lemma 4. Let kmax = dlog2 Ne+c and c= d−1+
√

1+8log2
1
δ

2 e.
For all 0 < δ < 1 and N ∈ Z+, pN,k ≤ δ and pN+1,k ≤ δ for all
k > kmax.

Next we want to find N2 such that for all N ≥ N2,
pN,kmax

pN+1,kmax
≥ e−ε. If this holds, then by Lemma 1, pN,k

pN+1,k
≥ e−ε

for all k ≤ kmax. Recall that for k = 0, pN,k
pN+1,k

= e
1
2 > e−ε for

all N trivially. Then we only need to consider the case k > 0.

In this case, pN,k
pN+1,k

= e
1

2k+1 ·∏k−1
j=0

(1−e
− N

2 j+1)

(1−e
− N+1

2 j+1)

. Let us define

Ψ(N,k) =
k−1

∏
j=0

(1− e−
N

2 j+1)

(1− e−
N+1
2 j+1)

(3)

We can see if Ψ(N,k) ≥ e−ε then pN,k
pN+1,k

≥ e−ε, because

e
1

2k+1 ≥ 1.
It is actually not difficult to find some N2 such that

Ψ(N2,kmax)≥ e−ε. The tricky part is whether for all N ≥ N2,
Ψ(N,kmax)≥ e−ε still holds. If Ψ(N,kmax) is monotonically
increasing in N, then this can be proved. However, this is only
partially true. Regarding this, we have the following:

Lemma 5. Let kmax as defined in Lemma 4, Ψ(N,kmax) <
Ψ(N +1,kmax) if dlog2 Ne= dlog2(N +1)e.

In the case that dlog2 Ne 6= dlog2(N + 1)e, there is a
problem because kmax changes. Recall that the value of
kmax = dlog2 Ne+ c. In the border case if N = 2t − 1 then
dlog2 Ne= t−1 and dlog2(N +1)e= t, so we need to com-
pare Ψ(N, t−1+ c) and Ψ(N +1, t + c). In this case:

Ψ(N, t−1+ c)
Ψ(N +1, t + c)

=
∏

t+c−2
j=0 (1− e−

N
2 j+1)

∏
t+c−2
j=0 (1− e−

N+1
2 j+1)

·
∏

t+c−1
j=0 (1− e−

N+2
2 j+1)

∏
t+c−1
j=0 (1− e−

N+1
2 j+1)

=
t+c−2

∏
j=0

(1− e−
N

2 j+1)(1− e−
N+2
2 j+1)

(1− e−
N+1
2 j+1)2

·
(

1− e−
N+2
2t+c

1− e−
N+1
2t+c

)
(4)

USENIX Association 30th USENIX Security Symposium 975

While the product term in (4) is less than 1, the term in the
big brackets is greater than 1. It is hard to decide whether
the whole formula is less than 1 or not. Although we cannot
compare Ψ(2t−1, t−1+c) and Ψ(2t , t +c), in Lemma 6 we
can show a weaker result (note 2t−1 in the lemma instead of
2t −1):

Lemma 6. For all t ∈ Z+, Ψ(2t−1, t− 1+ c) < Ψ(2t , t + c)
where c is as defined in Lemma 4.

Lemma 6 is useful because combining it and Lemma 5, we
can prove the following lemma:

Lemma 7. Let t0 ∈ Z+, if Ψ(2t0 , t0 + c)≥ e−ε, then for any
N ≥ 2t0 ,ε > 0, Ψ(N,kmax)≥ e−ε, where kmax is as defined in
Lemma 4.

Now we are ready to state the next theorem:

Theorem 3. Let ε > 0, and c,kmax as defined in Lemma 4. Let
t0 be the smallest positive integer that satisfies Ψ(2t0 , t0+c)≥
e−ε. Let N2 be the smallest integer in (2t0−1,2t0] such that
Ψ(N2, t0 + c) ≥ e−ε. Then, (1) ∀N ≥ N2,k ≤ kmax, pN,k

pN+1,k
≥

e−ε, and (2) ∀N ≥ N2,k > kmax, pN,k ≤ δ and pN+1,k ≤ δ.

Computing N0 Combining all the above together, we can
use Algorithm 8 to compute N0 for a given (ε,δ) pair:

Algorithm 8: FindN0(ε,δ)

Input: ε > 0,0 < δ < 1
Result: N0 ∈ Z+

1 kmin = max(dlog2
1
ε
e−1,0);

/* 1−qN,kmin decreases monotonically in N. */
2 Starting from 1, use an exponential search in [1,+∞] to find

N1 that is the smallest integer satisfying

1−qN1 ,kmin = 1−∑
2kmin
j=0 (−1)v(j)e−

j·N1
2kmin ≤ δ;

3 c = d−1+
√

1+8log2
1
δ

2 e;
4 Starting from 1, use an exponential search in [1,+∞] to find

t0 that is the smallest integer satisfying

∏
kmax−1
j=0

(1−e
− 2t0

2 j+1)

(1−e
− 2t0 +1

2 j+1)

≥ e−ε, where kmax = t0 + c;

/* search backwardly in (2t0−1,2t0] */

5 for i = 2t0 ; i > 2t0−1; i−− do

6 if (∏t0+c−1
j=0

(1−e
− N

2 j+1)

(1−e
− N+1

2 j+1)
< e−ε) then

7 N2 = i+1;
8 break;
9 end

10 end
11 Output N0 = max(N1,N2);

Regarding the algorithm, we have the following theorem:

Theorem 4. For all ε,δ ∈ R+ and δ ∈ (0,1), let N0 =
FindN0(ε,δ). When all DPs use a single FM sketch, our pro-
tocol satisfies (ε,δ)-differential privacy if the cardinality of
the union of all DP’s set is greater or equal to N0.

The running time of Algorithm 8 is bounded by the search
time, and in turn the values of, N1 and N2. We have the fol-
lowing Theorem:

Theorem 5. In algorithm 8, N1 and N2 increase monotoni-
cally as the parameter ε or δ decrease.

Therefore for smaller (ε,δ), the algorithm will take longer
to run. However this will not be a problem in practice. As an
example, we ran Algorithm 8 with extremely small parame-
ters ε = 2−40 and δ = 2−80, N0 = max(N1,N2) found by the
algorithm is 30,865,997,083,798, and the running time was in
the order of seconds4. Therefore, for all (ε,δ) normally used
in practice, N1,N2 will not be too large and the algorithm can
be efficiently computed (see also Table 1, in which the values
were computed with ε

m ,
δ

m).

5.2.3 Find N0: Multiple Sketches

The Bound By Composition Theorems If the DPs use m
FM sketches, then the output of the protocols is ZN = zN,1 +
· · ·+ zN,m, where zN,i is extracted from the i-th FM sketch. The
input set encoded by each FM sketch is the same, i.e. the
union of observations from all DPs, and the hash keys are
different. Therefore, using m FM sketches is like querying
a privacy mechanism m times, and the randomization of the
mechanism is independent for each query. The basic compo-
sition theorem (Theorem 3.16, [26]) states that if the base
differential privacy mechanism is (ε0,δ0)-differentially pri-
vate, then after m queries, any function of the m query results
is at least (mε0,mδ0)-differentially private. Therefore, in the
m sketches case, given the target (ε,δ) we want to achieve, it
suffices if each single FM sketch satisfies (ε

m ,
δ

m)-differential
privacy. When m is large, the advanced composition theorem
(Theorem 3.20, [26]) gives a better bound. For a base mecha-
nism that is (ε0,δ0) differentially private, after m queries, the
result is at least (ε,mδ0 +δ′)-differential privacy, where

ε =

√
2m ln

1
δ′

ε0 +mε0(eε0 −1), for any δ
′ > 0. (5)

Hence, given the target (ε,δ), we can obtain (ε0,δ0), then
an initial bound N̂0 = f indN0(ε0,δ0). For all N ≥ N̂0, (ε,δ)-
differential privacy holds, due to Theorem 4 and the composi-
tion theorems.

In Table 1, we show some N̂0 for different combinations of
parameters. When m = 100, the basic composition theorem
gives better results, so we set ε0 =

ε

100 ,δ0 =
δ

100 . For all other
m, we obtain ε0,δ0 through the advanced composition theo-
rem. We simply set δ′ = δ

2 and δ0 =
δ

2m , then we can get ε0
by (5). Note that in the table, when m = 100, we get the same
N̂0 in the cases when ε = 0.2 and ε = 0.3. This is because in
both cases N1 > N2, so N̂0 = N1. The value of N1 is a function

4The implementation is based on Arb (http://arblib.org/), a C library
supporting arbitrary precision real arithmetic.

976 30th USENIX Security Symposium USENIX Association

http://arblib.org/

ε

m
100 1000 2000 4000

1 2053 4596 9387 9564
0.5 4123 9210 18791 19146
0.3 8261 18437 37601 38310
0.2 8261 36891 37601 76638
0.1 16538 73800 75219 153295

Table 1: The value of N̂0 for different ε, m and fixed
δ = 2−40,w = 32

of dlog2
1
ε0
e− 1 and δ0. The same δ0 is used in both cases

and dlog2
100
0.2 e− 1 = dlog2

100
0.3 e− 1, so the algorithm gives

the same N̂0. For the same reason, we get the same N̂0 for
ε = 0.2 and ε = 0.3 when m = 2000.

The bound N̂0 by composition theorems is rather loose
and can be further improved. Next we will first show how to
compute the PMF of ZN , then how we can get an improved
bound N0 computationally.

PMF: m FM sketches The PMF of ZN can be obtained
through the probability generating functions (pgf for short)
[33]. We know that the pgf of a discrete random variable X
taking values in non-negative integer [0, j] is defined as:

GX (t) = E(tX) =
j

∑
k=0

Pr[X = k] · tk.

Therefore for zN,i, the pgfs are:

GzN,i(t) =
w−1

∑
k=0

pN,k · tk.

We use pgfs here because they are particularly useful for
dealing with the sum of independent random variables. In

fact, for ZN =
m

∑
i=1

zN,i, the pgf is:

GZN (t) =
(
GzN,i(t)

)m
=

(
w−1

∑
k=0

pN,k · tk

)m

. (6)

Another property of a pgf is that the PMF of X can be recov-
ered by taking derivatives of GX (t):

Pr[X = k] =
G(k)

X (0)
k!

. (7)

Expanding GZN (t), we will get the m(w−1)-th degree poly-

nomials
m(w−1)

∑
K=0

aKtK , where aK are coefficients and t is the

indeterminate. Then by (7), we have:

Pr[ZN = K] =
G(K)

ZN
(0)

K!
= aK . (8)

Refining the Bound In the m FM sketches case, (ε,δ)-
differential privacy holds if for every 0≤ K ≤ m(w−1):

e−ε ·Pr[ZN+1 = K]− δ

eε
≤ Pr[ZN = K]≤ eε ·Pr[ZN+1 = K]+δ. (9)

Therefore, we can use algorithm 9 to find the improved N0.

Algorithm 9: Re f ineBound(ε,δ, N̂0,m,w)

Input: ε,δ ∈ R+ and δ ∈ (0,1), N̂0,m,w ∈ Z+

Result: N0 ∈ Z+

1 stop =false;
2 N0 = N̂0+1;
3 do
4 N0 = N0−1;
5 Compute the polynomials GZN0

(t) and GZN0−1 (t) using (6);
6 for K = 0;K ≤ m(w−1);K ++ do
7 Let Pr[ZN = K] be the coefficient of the K-th degree term

of GZN0−1 (t);
8 Let Pr[ZN+1 = K] be the coefficient of the K-th degree

term of GZN0
(t);

9 if Pr[ZN = K] and Pr[ZN+1 = K] don’t satisfy (9) then
10 stop =true;
11 break;
12 end
13 end
14 while stop = false and N0 > 0;
15 output N0

Algorithm 9 starts from N̂0 and computationally verifies
N < N̂0 backwardly. It stops at N0 when N0−1 does not sat-
isfy differential privacy anymore. This N0 is the improved
bound and it is guaranteed that for all N ≥ N0, our protocol
satisfies (ε,δ)-differential privacy at the given (m,w) parame-
ters. In Table 2, we show the improved bound computed from
Algorithm 9. Compared to the values in Table 1, the improved
bound is significantly better.

The running time of Algorithm 9 is dominated by Step 5,
in which the pgfs are computed. Computing pgfs involving
polynomial exponentiation and the time increases when m in-
creases. For example, to get numbers in Table 2, it took 78 ms,
5350 ms, 21468 ms and 90237 ms to compute a single GZN0

(t)

when m = 100,1000,2000,4000 respectively. When N̂0 is
large, backward verification by Algorithm 9 could take quite
long time. That said, it should be noted that this verification
needs only to be done once for each parameter combination.

ε

m
100 1000 2000 4000

1 85 254 355 497
0.5 166 496 693 969
0.3 273 813 1136 1587
0.2 404 1205 1682 2351
0.1 790 2359 3293 4600

Table 2: The value of N0 by Algorithm 9 for different ε, m
and fixed δ = 2−40,w = 32

USENIX Association 30th USENIX Security Symposium 977

The bound N0 can easily be achieved in real world applica-
tions. For example, when ε = 0.3, which is recommended for
safe measurements in anonymity networks [38], even with a
large m = 4000, N0 is only 1587. For smaller ε values, N0 are
still reasonably small across different m values. Note that N0
is the lower bound, therefore the privacy level is guaranteed
even if the actual cardinality is larger than N0. We can also
see that for the same privacy parameters, a larger set allows
us to get a better accuracy (by allowing a larger m at the same
privacy level). This means we can get both good utility and
good privacy if the set is large.

6 Experimental Evaluation

We have implemented a prototype of our protocol in C++.
The source code of the protocol is available online5. We used
the implementation of Overdrive (low gear) in the SPDZ2
repository6 for the pre-processing part, and implemented our
offline and online protocols on top of that. We compare the
performance of our protocol to the state of the art [30]. The
implementation of [30] provided by the authors is in Go and
does not fully support multi-threading. For a fair comparison,
we re-implemented the protocol in [30] in C++. In this im-
plementation, we use OpenSSL 1.0.1 for all cryptographic
operations and pthread for multi-threading. The performance
of our new implementation is much better than that reported
in [30]. We used 40 for the statistical security parameter and
128 for the computational security parameter in all experi-
ments.

We ran all CPs in Amazon AWS. We used the EC2 instance
type r5.4xlarge (on-demand) for each CP. Each instance has
16 vCPUs (8 physical cores) based on Intel Xeon Platinum
8000 series (Skylake-SP) CPUs, 128GB RAM, one network
interface up to 10 Gpbs LAN speed, and costs $1.008 - $1.12
per hour in US data centers. We conducted experiments both
in a LAN environment (all CPs were in the Oregon AWS data
center), and a WAN environment (CPs were distributed in
4 different AWS data centers in the US7). The DPs ran on
desktops, with a typical hardware configuration of an Intel
Quadcore i7-6700k CPU and 16 GB RAM. We used 20 DPs
in all experiments and varied the number of CPs.

In Table 3, we show the total running time and communi-
cation (send+receive) cost of our protocol in the offline and
online phases. We implemented the group authenticated key
exchange protocol in [39]. The offline phase measurement
includes the costs of the SPDZ pre-processing protocol and
our offline protocols. The online phase measurement includes
all online protocols, from DP sharing the sketch to the CPs
outputting ZN (using the ExtractZ protocol in LAN and Ex-
tractZBS protocol in WAN). Note we do not include the time
used by the DPs to collect data because this time is irrelevant

5https://github.com/saftoes/pdce
6https://github.com/bristolcrypto/SPDZ-2
7N Virginia, Ohio, Northern California, Oregon.

to our protocol. In the experiments, the DPs first did the initial
sharing and then immediately the final sharing of the Oblivi-
ous FM sketches. The running time and communication cost
shown in the table are the average of those measured over
all CPs. For the running time, we show the time measured in
LAN and WAN. The communication costs in LAN and WAN
are almost the same, thus we only show the larger one of the
two. We varied the number of distinct elements in the experi-
ments, from 20000, to 1 million (106), to 1 billion (109). This
change affects the size of the modulus p (55, 60, 70 respec-
tively) and the size of the sketches w (19, 24, 34 respectively).
We also used different number of sketches (m) for different
accuracy levels. As we can see in the table, the total running
time is dominated by the offline phase. While the offline run-
ning time is in the order of minutes, the online running time is
only in the order of seconds. We can also see that the offline
running time is less than 1 hour even with the largest param-
eter group, and since the offline computation can be done
during the period when the DPs are collecting the data, the
performance should be acceptable (many applications may
only require daily or even less frequent update of the esti-
mate). The protocol has good scalability: when N increases
from 20000 to 109 (50000 times), the running time increases
only to about 2 times (log(109)/ log(20000) ≈ 2). The run-
ning time in LAN is much less than that measured in WAN.
The differences in network bandwidth and latency are likely
the causes of the slowdown. Communication-wise, the offline
phase cost is much higher than the online phase cost. As we
can see in Table 4, most of the cost in the offline phase is
due to the Triple generation protocol in SPDZ, which utilizes
heavy machinery such as somewhat homomorphic encryption
and zero-knowledge proofs. In Table 4, we also show the
differences in performance for the ExtractZ (Protocol 7) and
ExtractZBS (Protocol 10, Appendix A). The results confirm
that in the high network latency setting, ExtractZBS performs
better due to fewer communication rounds/interactions.

As a comparison, we show in Figure 4 the total running
time and communication cost of the protocol in [30]. In the
experiments, we used 5 CPs (16 threads) and 20 DPs. We
varied N from 20000 to 50000, and as in [30], set the number
of bins to 10 ·N so the collision probability is less than 10%.
We also set (ε,δ) for differential privacy to (0.3,10−12), the
default values used in [30]. Note the parameters are weaker
than those for our protocol: with N = 20000 and other pa-
rameters in the experiments, our protocol can easily achieve
(0.1,10−12)-differential privacy, and even better privacy when
N grows bigger. We only tested with all CPs in the same LAN,
as the figures in the WAN setting would be even higher. As we
can see, the protocol in [30] is much slower than ours, and its
running time increases much faster. When N = 20000, its run-
ning time in LAN is about 1.2 times of ours in WAN, and 8.5
times of ours in LAN (both m = 4000); when N = 50000, it
needs almost 2.5 hours in LAN, while our protocol (in WAN)
with N = 109 only needs less than 50 minutes (offline+online).

978 30th USENIX Security Symposium USENIX Association

https://github.com/saftoes/pdce
https://github.com/bristolcrypto/SPDZ-2

N = 20000 N = 106 N = 109

m=1000 m=2000 m=4000 m=1000 m=2000 m=4000 m=1000 m=2000 m=4000

Running Time (s)
LAN Offline 66.5 132.2 222.8 78.1 154.7 307.6 149.3 257.3 515.8

Online 0.079 0.151 1.997 0.110 0.189 0.271 0.201 0.377 0.522

WAN Offline 320 624.1 1470.5 411.7 811.1 1578.9 757.1 1421.8 2944.2
Online 2.414 2.036 2.623 1.754 2.360 2.934 2.689 3.031 5.026

Communication Offline 10.7 21.4 35.2 12.09 24.18 48.5 23.3 39.05 78.3
(GB) Online 0.008 0.016 0.031 0.010 0.020 0.041 0.028 0.056 0.120

Table 3: Total running time and communication cost: 5 CPs (16 threads), 20 DPs.

Running Time (s)
Comm. (GB)

LAN WAN
Group AKE (per DP) 0.014 0.46 6.36×10−6

Offline

Triple 417.0 2414.1 68.5
Rand 50.6 452.4 7.4

Rand2 47.4 70.3 1.83
RandExp 0.8 7.4 0.61

Online

Share (per DP) 0.155 1.877 0.0087
MergeShare 0.00130 0.00129 N/A

ZeroTest 0.32 2.345 0.070
ExtractZ 0.049 1.482 0.034

ExtractZBS 0.063 0.803 0.042

Table 4: Performance breakdown: 5 CPs (16 threads), 20
DPs, N = 109, m = 4000

The running time of [30] is slightly convex due to a quadratic
step in a zero-knowledge proof sub-protocol. The communi-
cation complexity of the protocol in [30] is linear. When N
is small, the protocol in [30] has a much smaller communi-
cation cost compared to ours, e.g. 1.4 GB vs 35.2 GB when
N = 20000. However since the communication complexity
of the protocol in [30] is linear and that of ours is logarithmic,
the communication cost of the protocol in [30] will exceed
that of ours eventually. As an estimation, when N is 106, the
communication cost of the protocol in [30] would be 60 GB
roughly, which is already higher than ours (48.5 GB).

2 3 4 5
N (104)

0

1

2

3

4

C
om

m
ni

ca
tio

n
(G

B)

2 3 4 5
N (104)

0
2000
4000
6000
8000

10000

R
un

ni
ng

 ti
m

e
(s

)

Figure 4: Performance of protocol in [30] (LAN)
Next, we show in Figure 5 the performance of our protocol

and the protocol in [30] with a varying number of CPs. For
our protocol, we fixed N to 109 and m to 4000, with a varying
number of CPs from 2 to 7. As we can see, the communication
cost and the running time in LAN increase linearly in the
number of CPs. The line of the running time in WAN is not
very regular, but we can see that the running time is roughly
linear. In typical applications, the number of CPs is quite
unlikely to exceed 10. However in the case of more CPs, we
could switch the SPDZ pre-processing protocol to High Gear.
High Gear’s performance surpasses Low Gear (we currently

use) when executed with a high number of parties (more
than 10 as reported in [41]). As the computation time of
our protocol is dominated by the SPDZ pre-processing, this
would allow us to handle more CPs more gracefully. For the
protocol in [30], we fixed N to 20000, and used 2, 5, 7 CPs
in the experiment. The communication cost of this protocol
is also linear in the number of CPs, but the running time is
slightly worse than linear. The results are consistent with
those reported in [30].

(a) Our protocol, N = 109, m = 4000
<latexit sha1_base64="15w47NRmt8+XQcru5s39scif10k=">AAACSnicbVBNS1tBFJ2X2qqxH6ku3QwmgoUS5klBXQhSN4LgBxgVTBrmzbsvDs7HY+a+YnjkR/V/dC/udOfanbhxElOo0QMDh3Pv4cw9Sa6kR8auo8q7qfcfpmdmq3MfP33+Uvs6f+xt4QS0hFXWnSbcg5IGWihRwWnugOtEwUlysT2cn/wG56U1R9jPoaN5z8hMCo5B6tZ22wn0pCkFGAQ3qLYRLjHJyhX+bUD3C0dzZ9GGnO+0sUc3acx+bTQC15s/GGONahtM+s/crdVZk41AX5N4TOpkjINu7a6dWlHoYBeKe38Wsxw7JXcohYLwmcJDzsUF78FZoIZr8J1ydPSALgclpZl14RmkI/V/R8m1932dhE3N8dxPzobimzOPmru+SyfyMVvvlNLkBYIRz/FZoShaOuyVptKBQNUPhAsnwwVUnHPHRWjGV0M18WQRr8nxajNmzfhwtb71c1zSDFkkS2SFxGSNbJEdckBaRJA/5IrckNvob3QfPUSPz6uVaOxZIC9QmXoCt++w1w==</latexit><latexit sha1_base64="15w47NRmt8+XQcru5s39scif10k=">AAACSnicbVBNS1tBFJ2X2qqxH6ku3QwmgoUS5klBXQhSN4LgBxgVTBrmzbsvDs7HY+a+YnjkR/V/dC/udOfanbhxElOo0QMDh3Pv4cw9Sa6kR8auo8q7qfcfpmdmq3MfP33+Uvs6f+xt4QS0hFXWnSbcg5IGWihRwWnugOtEwUlysT2cn/wG56U1R9jPoaN5z8hMCo5B6tZ22wn0pCkFGAQ3qLYRLjHJyhX+bUD3C0dzZ9GGnO+0sUc3acx+bTQC15s/GGONahtM+s/crdVZk41AX5N4TOpkjINu7a6dWlHoYBeKe38Wsxw7JXcohYLwmcJDzsUF78FZoIZr8J1ydPSALgclpZl14RmkI/V/R8m1932dhE3N8dxPzobimzOPmru+SyfyMVvvlNLkBYIRz/FZoShaOuyVptKBQNUPhAsnwwVUnHPHRWjGV0M18WQRr8nxajNmzfhwtb71c1zSDFkkS2SFxGSNbJEdckBaRJA/5IrckNvob3QfPUSPz6uVaOxZIC9QmXoCt++w1w==</latexit><latexit sha1_base64="15w47NRmt8+XQcru5s39scif10k=">AAACSnicbVBNS1tBFJ2X2qqxH6ku3QwmgoUS5klBXQhSN4LgBxgVTBrmzbsvDs7HY+a+YnjkR/V/dC/udOfanbhxElOo0QMDh3Pv4cw9Sa6kR8auo8q7qfcfpmdmq3MfP33+Uvs6f+xt4QS0hFXWnSbcg5IGWihRwWnugOtEwUlysT2cn/wG56U1R9jPoaN5z8hMCo5B6tZ22wn0pCkFGAQ3qLYRLjHJyhX+bUD3C0dzZ9GGnO+0sUc3acx+bTQC15s/GGONahtM+s/crdVZk41AX5N4TOpkjINu7a6dWlHoYBeKe38Wsxw7JXcohYLwmcJDzsUF78FZoIZr8J1ydPSALgclpZl14RmkI/V/R8m1932dhE3N8dxPzobimzOPmru+SyfyMVvvlNLkBYIRz/FZoShaOuyVptKBQNUPhAsnwwVUnHPHRWjGV0M18WQRr8nxajNmzfhwtb71c1zSDFkkS2SFxGSNbJEdckBaRJA/5IrckNvob3QfPUSPz6uVaOxZIC9QmXoCt++w1w==</latexit><latexit sha1_base64="15w47NRmt8+XQcru5s39scif10k=">AAACSnicbVBNS1tBFJ2X2qqxH6ku3QwmgoUS5klBXQhSN4LgBxgVTBrmzbsvDs7HY+a+YnjkR/V/dC/udOfanbhxElOo0QMDh3Pv4cw9Sa6kR8auo8q7qfcfpmdmq3MfP33+Uvs6f+xt4QS0hFXWnSbcg5IGWihRwWnugOtEwUlysT2cn/wG56U1R9jPoaN5z8hMCo5B6tZ22wn0pCkFGAQ3qLYRLjHJyhX+bUD3C0dzZ9GGnO+0sUc3acx+bTQC15s/GGONahtM+s/crdVZk41AX5N4TOpkjINu7a6dWlHoYBeKe38Wsxw7JXcohYLwmcJDzsUF78FZoIZr8J1ydPSALgclpZl14RmkI/V/R8m1932dhE3N8dxPzobimzOPmru+SyfyMVvvlNLkBYIRz/FZoShaOuyVptKBQNUPhAsnwwVUnHPHRWjGV0M18WQRr8nxajNmzfhwtb71c1zSDFkkS2SFxGSNbJEdckBaRJA/5IrckNvob3QfPUSPz6uVaOxZIC9QmXoCt++w1w==</latexit>

(b) Protocol in [26], N = 20000
<latexit sha1_base64="BVAEJugGRGpKTNNwAsK3tFIW1So=">AAACQ3icbVBBSxtBGJ1N1cZobbRHL4NRUChhdw9tL4WgPXiSCCYRkiXMzn4bB2dnlplvS8OSP+T/6N2r/QUFb6VXwUmMoIkPBh7v+x5vvhfnUlj0/Tuv8m5lde19db22sflh62N9e6drdWE4dLiW2lzGzIIUCjooUMJlboBlsYRefH0ynfd+grFCqwsc5xBlbKREKjhDJw3rPwYxjIQqOSgEM6kNEH5hnJaH8dGEto1G7TKoULQffok+0/2z76HvsF8bgEqeXcN6w2/6M9BlEsxJg8zRHtb/DhLNi8zZuWTW9gM/x6hkBgWX4H5RWMgZv2Yj6DuqWAY2KmfXTuiBUxKaauOeQjpTXzpKllk7zmK3mTG8souzqfjmzGLGzNgkC/mYfotKofICQfGn+LSQFDWdFkoTYYCjHDvCuBHuAsqvmGHcNWNrrppgsYhl0g2bgd8MzsNG63heUpXskj1ySALylbTIKWmTDuHkhtySO/LH++3de/+8/0+rFW/u+URewXt4BKiIsAo=</latexit><latexit sha1_base64="BVAEJugGRGpKTNNwAsK3tFIW1So=">AAACQ3icbVBBSxtBGJ1N1cZobbRHL4NRUChhdw9tL4WgPXiSCCYRkiXMzn4bB2dnlplvS8OSP+T/6N2r/QUFb6VXwUmMoIkPBh7v+x5vvhfnUlj0/Tuv8m5lde19db22sflh62N9e6drdWE4dLiW2lzGzIIUCjooUMJlboBlsYRefH0ynfd+grFCqwsc5xBlbKREKjhDJw3rPwYxjIQqOSgEM6kNEH5hnJaH8dGEto1G7TKoULQffok+0/2z76HvsF8bgEqeXcN6w2/6M9BlEsxJg8zRHtb/DhLNi8zZuWTW9gM/x6hkBgWX4H5RWMgZv2Yj6DuqWAY2KmfXTuiBUxKaauOeQjpTXzpKllk7zmK3mTG8souzqfjmzGLGzNgkC/mYfotKofICQfGn+LSQFDWdFkoTYYCjHDvCuBHuAsqvmGHcNWNrrppgsYhl0g2bgd8MzsNG63heUpXskj1ySALylbTIKWmTDuHkhtySO/LH++3de/+8/0+rFW/u+URewXt4BKiIsAo=</latexit><latexit sha1_base64="BVAEJugGRGpKTNNwAsK3tFIW1So=">AAACQ3icbVBBSxtBGJ1N1cZobbRHL4NRUChhdw9tL4WgPXiSCCYRkiXMzn4bB2dnlplvS8OSP+T/6N2r/QUFb6VXwUmMoIkPBh7v+x5vvhfnUlj0/Tuv8m5lde19db22sflh62N9e6drdWE4dLiW2lzGzIIUCjooUMJlboBlsYRefH0ynfd+grFCqwsc5xBlbKREKjhDJw3rPwYxjIQqOSgEM6kNEH5hnJaH8dGEto1G7TKoULQffok+0/2z76HvsF8bgEqeXcN6w2/6M9BlEsxJg8zRHtb/DhLNi8zZuWTW9gM/x6hkBgWX4H5RWMgZv2Yj6DuqWAY2KmfXTuiBUxKaauOeQjpTXzpKllk7zmK3mTG8souzqfjmzGLGzNgkC/mYfotKofICQfGn+LSQFDWdFkoTYYCjHDvCuBHuAsqvmGHcNWNrrppgsYhl0g2bgd8MzsNG63heUpXskj1ySALylbTIKWmTDuHkhtySO/LH++3de/+8/0+rFW/u+URewXt4BKiIsAo=</latexit><latexit sha1_base64="BVAEJugGRGpKTNNwAsK3tFIW1So=">AAACQ3icbVBBSxtBGJ1N1cZobbRHL4NRUChhdw9tL4WgPXiSCCYRkiXMzn4bB2dnlplvS8OSP+T/6N2r/QUFb6VXwUmMoIkPBh7v+x5vvhfnUlj0/Tuv8m5lde19db22sflh62N9e6drdWE4dLiW2lzGzIIUCjooUMJlboBlsYRefH0ynfd+grFCqwsc5xBlbKREKjhDJw3rPwYxjIQqOSgEM6kNEH5hnJaH8dGEto1G7TKoULQffok+0/2z76HvsF8bgEqeXcN6w2/6M9BlEsxJg8zRHtb/DhLNi8zZuWTW9gM/x6hkBgWX4H5RWMgZv2Yj6DuqWAY2KmfXTuiBUxKaauOeQjpTXzpKllk7zmK3mTG8souzqfjmzGLGzNgkC/mYfotKofICQfGn+LSQFDWdFkoTYYCjHDvCuBHuAsqvmGHcNWNrrppgsYhl0g2bgd8MzsNG63heUpXskj1ySALylbTIKWmTDuHkhtySO/LH++3de/+8/0+rFW/u+URewXt4BKiIsAo=</latexit>

2 3 4 5 6 7
Number of Parties

0
10
20
30
40
50
60

C
om

m
ni

ca
tio

n
(G

B)

2 3 4 5 6 7
Number of Parties

100

200

300

400

Ti
m

e
- L

AN
 (s

)

2 3 4 5 6 7
Number of Parties

0

500

1000

1500

2000

Ti
m

e
- W

AN
 (s

)

2 3 4 5 6 7
Number of Parties

0

0.5

1

1.5

2

2.5

C
om

m
ni

ca
tio

n
(G

B)

2 3 4 5 6 7
Number of Parties

0

1000

2000

3000

4000

Ti
m

e
- L

AN
 (s

)

2 3 4 5 6 7
Number of Parties

0
10
20
30
40
50
60

C
om

m
ni

ca
tio

n
(G

B)

2 3 4 5 6 7
Number of Parties

100

200

300

400

Ti
m

e
- L

AN
 (s

)

2 3 4 5 6 7
Number of Parties

0

500

1000

1500

2000

Ti
m

e
- W

AN
 (s

)

2 3 4 5 6 7
Number of Parties

0

0.5

1

1.5

2

2.5

C
om

m
ni

ca
tio

n
(G

B)

2 3 4 5 6 7
Number of Parties

0

1000

2000

3000

4000
Ti

m
e

- L
AN

 (s
)

[33]

Figure 5: Performance with different number of CPs

In Figure 6, we show the distribution of the relative errors
(|Ñ−N|

N where Ñ is the cardinality estimated from the sketches
and N is the true cardinality) when using a different number
of FM sketches. We used m = 1000, 2000 and 4000 sketches,
using two sets with 20000 and 106 random elements as inputs.
We repeated each experiment 1000 times and drew the his-
tograms. As we can see, when m increases, the max relative
error decreases, and the distribution gets more concentrated
towards 0. With m = 4000, about 99% of the estimations have
a relative error less than 3%, and the maximum relative error
observed was 4.3%. On the other hand, the estimations using
the method in [30] had a slightly higher relative error (see the
full version) due to the hash collisions and the noise added to
achieve differential privacy.

Since the cardinality count produced by the protocol in [30]
is also approximate, it would be interesting to see whether
our differential privacy analysis can result in a cheaper vari-
ant of that protocol, and if so how would the performance of

USENIX Association 30th USENIX Security Symposium 979

Figure 6: Distribution of relative errors
the variant compare to that of our protocol. In principle the
protocol of [30] could also obtain differential privacy for free
with honest DPs and a private hash key, although we have not
done the analysis and the analysis may not be trivial. If [30]
achieves differential privacy by hashing, then the CPs do not
need to add noise. However, the performance improvement
would be around 20-30% at most, based on our experience
of implementing the protocol. The performance would be in
the same order as it is now, and thus still much worse than
that of our protocol. This is because the main factors affecting
the performance of [30] are not adding noise but (1) public
key encryption; (2) verifiable shuffling and zero-knowledge
proofs; (3) superlinear (in the maximum measurable cardinal-
ity) computational and communication complexity.

7 Conclusion and Future Work

In this paper, we present and analyse a PDCE protocol.
The protocol is efficient and scalable, due to the use of FM
sketches as the underlying data structure for cardinality es-
timation, and the use of efficient secret sharing based MPC
primitives. We proved the security of the protocol against a
malicious adversary in the UC framework. More interestingly,
we showed that the combination of secure computation and
the FM sketches allows us to get (ε,δ)-differential privacy for
free. We implemented our protocol and evaluated it experi-
mentally. Our experiments showed that the protocol is much
more efficient and scalable than the state of the art [30].

We would like to continue investigating the use of data
structures in secure computation protocols to improve their ef-
ficiency and scalability. Data structures such as sketches could
lead to sub-linear complexity protocols, which are highly de-
sirable for Big Data applications. We would also like to in-
vestigate the relationship between differential privacy and
sketches, to extend and generalize the results in this paper to
other sketches/data structures.

Acknowledgement

We thank shepherd Mathias Lécuyer as well as the anonymous
reviewers for their insightful comments. This research was
supported in part by UK EPSRC under grant EP/M013561/2;
National Natural Science Foundation of China under grant
61722203 (Outstanding Youth Foundation), U1936218 (Joint
Fund Project), 62032012, 62072132, and 61771259; National
Key Research and Development Program of China under grant
2020YFB1005700.

References

[1] Health Insurance Portability and Accountability Act of 1996.
https://aspe.hhs.gov/report/health-insurance-
portability-and-accountability-act-1996, 1996.

[2] Gramm-Leach-Bliley Act. https://www.ftc.gov/tips-
advice/business-center/privacy-and-security/
gramm-leach-bliley-act, 1999.

[3] General Data Protection Regulation. https://eur-
lex.europa.eu/legal-content/EN/TXT/HTML/?uri=
CELEX:32016R0679&from=EN, 2018.

[4] The Royal Society Report on Privacy Enhancing Tech-
nologies. https://royalsociety.org/-/media/policy/
projects/privacy-enhancing-technologies/privacy-
enhancing-technologies-report.pdf, 2019.

[5] Gergely Ács and Claude Castelluccia. A case study: privacy
preserving release of spatio-temporal density in paris. In KDD,
pages 1679–1688, 2014.

[6] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Mil-
ner, Samuel Madden, and Ion Stoica. Blinkdb: queries with
bounded errors and bounded response times on very large data.
In EuroSys, pages 29–42, 2013.

[7] Akamai. Real-Time Web Metrics Methodol-
ogy. https://www.akamai.com/uk/en/resources/
visualizing-akamai/real-time-web-monitor/real-
time-web-metrics-methodology.jsp.

[8] Vikas G. Ashok and Ravi Mukkamala. A scalable and efficient
privacy preserving global itemset support approximation using
bloom filters. In DBSec, pages 382–389, 2014.

[9] Martin Azizyan, Ionut Constandache, and Romit Roy Choud-
hury. Surroundsense: mobile phone localization via ambience
fingerprinting. In MOBICOM, pages 261–272, 2009.

[10] Donald Beaver. Efficient multiparty protocols using circuit
randomization. In CRYPTO, pages 420–432, 1991.

[11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (lev-
eled) fully homomorphic encryption without bootstrapping. In
ITCS.

[12] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proceedings 2001
IEEE International Conference on Cluster Computing, pages
136–145, 2001.

[13] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In FOCS, pages 136–
145, 2001.

980 30th USENIX Security Symposium USENIX Association

https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996
https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996
https://www.ftc.gov/tips-advice/business-center/privacy-and-security/gramm-leach-bliley-act
https://www.ftc.gov/tips-advice/business-center/privacy-and-security/gramm-leach-bliley-act
https://www.ftc.gov/tips-advice/business-center/privacy-and-security/gramm-leach-bliley-act
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://royalsociety.org/-/media/policy/projects/privacy-enhancing-technologies/privacy-enhancing-technologies-report.pdf
https://royalsociety.org/-/media/policy/projects/privacy-enhancing-technologies/privacy-enhancing-technologies-report.pdf
https://royalsociety.org/-/media/policy/projects/privacy-enhancing-technologies/privacy-enhancing-technologies-report.pdf
https://www.akamai.com/uk/en/resources/visualizing-akamai/real-time-web-monitor/real-time-web-metrics-methodology.jsp
https://www.akamai.com/uk/en/resources/visualizing-akamai/real-time-web-monitor/real-time-web-metrics-methodology.jsp
https://www.akamai.com/uk/en/resources/visualizing-akamai/real-time-web-monitor/real-time-web-metrics-methodology.jsp

[14] T.-H. Hubert Chan, Mingfei Li, Elaine Shi, and Wenchang Xu.
Differentially private continual monitoring of heavy hitters
from distributed streams. In PETS, pages 140–159, 2012.

[15] Graham Cormode. Data sketching. Commun. ACM, 60(9):48–
55, August 2017.

[16] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Se-
cure Multiparty Computation and Secret Sharing. Cambridge
University Press, 2015.

[17] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast
and private computation of cardinality of set intersection and
union. In CANS, pages 218–231, 2012.

[18] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro,
Peter Scholl, and Nigel P. Smart. Practical covertly secure
MPC for dishonest majority - or: Breaking the SPDZ limits.
In ESORICS, pages 1–18, 2013.

[19] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Za-
karias. Multiparty computation from somewhat homomorphic
encryption. In CRYPTO, pages 643–662, 2012.

[20] Alex Davidson and Carlos Cid. An efficient toolkit for com-
puting private set operations. In ACISP, pages 261–278, 2017.

[21] Damien Desfontaines, Andreas Lochbihler, and David A. Basin.
Cardinality estimators do not preserve privacy. In PETS.

[22] Roger Dingledine, Nick Mathewson, and Paul F. Syverson.
Tor: The second-generation onion router. In USENIX Security,
pages 303–320, 2004.

[23] Changyu Dong and Grigorios Loukides. Approximating pri-
vate set union/intersection cardinality with logarithmic com-
plexity. IEEE Trans. Information Forensics and Security,
12(11):2792–2806, 2017.

[24] Cynthia Dwork. Differential privacy. In ICALP, pages 1–12,
2006.

[25] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya
Mironov, and Moni Naor. Our data, ourselves: Privacy via
distributed noise generation. In EUROCRYPT, pages 486–503,
2006.

[26] Cynthia Dwork and Aaron Roth. The algorithmic foundations
of differential privacy. Found. Trends Theor. Comput. Sci.,
9(3-4):211–407, 2014.

[27] Rolf Egert, Marc Fischlin, David Gens, Sven Jacob, Matthias
Senker, and Jörn Tillmanns. Privately computing set-union and
set-intersection cardinality via bloom filters. In ACISP, pages
413–430, 2015.

[28] Tariq Elahi, George Danezis, and Ian Goldberg. Privex: Private
collection of traffic statistics for anonymous communication
networks. In ACM CCS, pages 1068–1079, 2014.

[29] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAP-
POR: randomized aggregatable privacy-preserving ordinal re-
sponse. In ACM CCS, pages 1054–1067, 2014.

[30] Ellis Fenske, Akshaya Mani, Aaron Johnson, and Micah Sherr.
Distributed measurement with private set-union cardinality. In
ACM CCS, pages 2295–2312, 2017.

[31] Philippe Flajolet and G. Nigel Martin. Probabilistic counting
algorithms for data base applications. J. Comput. Syst. Sci.,
31(2):182–209, 1985.

[32] Oded Goldreich. The Foundations of Cryptography. Cam-
bridge University Press, 2004.

[33] Geoffrey Grimmett and David Stirzaker. Probability and ran-
dom processes. Oxford University Press, third edition edition,
2001.

[34] Hazar Harmouch and Felix Naumann. Cardinality estimation:
An experimental survey. PVLDB, 11(4):499–512, 2017.

[35] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford.
Network-wide heavy hitter detection with commodity switches.
In SOSR, 2018.

[36] Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Actively secure garbled circuits with constant
communication overhead in the plain model. In TCC, pages
3–39, 2017.

[37] Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyper-
loglog in practice: algorithmic engineering of a state of the art
cardinality estimation algorithm. In EDBT, pages 683–692,
2013.

[38] Rob Jansen and Aaron Johnson. Safely measuring tor. In ACM
CCS, pages 1553–1567, 2016.

[39] Jonathan Katz and Moti Yung. Scalable protocols for authenti-
cated group key exchange. In CRYPTO, pages 110–125, 2003.

[40] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT:
faster malicious arithmetic secure computation with oblivious
transfer. In ACM CCS, pages 830–842, 2016.

[41] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive:
Making SPDZ great again. In EUROCRYPT, pages 158–189,
2018.

[42] Helger Lipmaa and Tomas Toft. Secure equality and greater-
than tests with sublinear online complexity. In ICALP, pages
645–656, 2013.

[43] Akshaya Mani and Micah Sherr. Historε: Differentially private
and robust statistics collection for tor. In NDSS, 2017.

[44] Luca Melis, George Danezis, and Emiliano De Cristofaro. Ef-
ficient private statistics with succinct sketches. In NDSS, 2016.

[45] Darakhshan J. Mir, S. Muthukrishnan, Aleksandar Nikolov,
and Rebecca N. Wright. Pan-private algorithms via statistics
on sketches. In PODS, pages 37–48, 2011.

[46] David Moore, Geoffrey M. Voelker, and Stefan Savage. Infer-
ring internet denial-of-service activity. In USENIX Security,
2001.

[47] A. B. M. Musa and Jakob Eriksson. Tracking unmodified
smartphones using wi-fi monitors. In SenSys, pages 281–294,
2012.

[48] Nikos Ntarmos, Peter Triantafillou, and Gerhard Weikum.
Counting at large: Efficient cardinality estimation in internet-
scale data networks. In ICDE, 2006.

[49] Information Commisioner’s Office. Wi-fi location analytics.
2016.

[50] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A
framework for efficient and composable oblivious transfer. In
CRYPTO, pages 554–571, 2008.

[51] Vibhor Rastogi and Suman Nath. Differentially private ag-
gregation of distributed time-series with transformation and
encryption. In SIGMOD, pages 735–746, 2010.

[52] Nathaniel Schenker and Trivellore E. Raghunathan. Combining
information from multiple surveys to enhance estimation of
measures of health. Statistics in medicine, 26(8):1802–1811,
2007.

USENIX Association 30th USENIX Security Symposium 981

[53] Björn Scheuermann and Martin Mauve. Near-optimal com-
pression of probabilistic counting sketches for networking ap-
plications. In DIALM-POMC, 2007.

[54] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard
Chow, and Dawn Song. Privacy-preserving aggregation of
time-series data. In NDSS, 2011.

[55] Hagen Sparka, Florian Tschorsch, and Björn Scheuermann.
P2KMV: A privacy-preserving counting sketch for efficient
and accurate set intersection cardinality estimations. IACR
Cryptology ePrint Archive, 2018:234, 2018.

[56] Rade Stanojevic, Mohamed Nabeel, and Ting Yu. Distributed
cardinality estimation of set operations with differential privacy.
In IEEE PAC, pages 37–48, 2017.

[57] STASTICA. Marks & Spencer average weekly
footfall in the United Kingdom (UK) 2009-2018.
https://www.statista.com/statistics/413515/marks-
and-spencer-mands-average-weekly-footfall-
united-kingdom-uk/.

[58] Stephanie Clifford and Quentin Hardy. Attention,
Shoppers: Store Is Tracking Your Cell. https:
//www.nytimes.com/2013/07/15/business/attention-
shopper-stores-are-tracking-your-cell.html, 2013.

[59] The Guardian. Shops can track you via your smartphone,
privacy watchdog warns. https://www.theguardian.com/
technology/2016/jan/21/shops-track-smartphone-
uk-privacy-watchdog-warns, 2016.

[60] Florian Tschorsch and Björn Scheuermann. An algorithm
for privacy-preserving distributed user statistics. Computer
Networks, 57(14):2775 – 2787, 2013.

[61] Wei Xi, Jizhong Zhao, Xiang-Yang Li, Kun Zhao, Shaojie Tang,
Xue Liu, and Zhiping Jiang. Electronic frog eye: Counting
crowd using wifi. In INFOCOM, pages 361–369, 2014.

[62] Qingjun Xiao, You Zhou, and Shigang Chen. Better with fewer
bits: Improving the performance of cardinality estimation of
large data streams. In INFOCOM, pages 1–9, 2017.

A Alternative Protocol for Extracting Estima-
tor

Recall that zN is the index of the first 0 bit in a sketch, thus extracting
zN can be converted to a search problem. Protocol 10 performs
essentially a binary search. In Protocol 10, the bits in the sketch are
first negated (lines 3 - 5). Then the sketch is divided into two halves.
If all bits now in the first half are 0, then before negation, all of them
were 1, which means the first 0 we are looking for is in the second
half. Then we know zN must be the size of the first half plus some
offset into the second half, and we can throw away the first half and
do a binary search on the second half to find the offset. If not all
bits in the first half are 0, then the first 0 we are looking for is in the
first half. Then we can throw away the second half and do another
binary search on the first half. Obviously, we cannot reveal whether
the first half is all 0 in the protocol, as this leaks information. So
what we do is to sum all bits in the first half into x, then interpolate
a lookup polynomial f such that B0 = f (x+ 1) = 1 if x = 0 and

0 otherwise (lines 8 – 10). Then we obliviously combine the first
half and the second half, by multiplying every bit in the second half
with B0 and add the result to the first half (lines 12 – 17). Since
the multiplications are independent, they can be batched together.
Note also that an extra addition is needed if the two halves are not
of the same size. If the first half is all 0, then we need to continue
searching the second half. In this case, B0 is 1 and what we get after
the addition is the second half. If the first half is not all 0, then we do
not have to search the second half at all. In this case B0 is 0 and we
get the first half after the addition. Then we start the while loop again
until there are only few bits left to search. In this case, we take the
bits left and do a lookup to finish the search (lines 20 – 22). There
are log(w) iterations in the while loop, and in each iteration, we need
two rounds: one round for line 10 (because of the multiplication in
the Lookup protocol) and one round for the multiplications in the
for loop staring at line 12.

Protocol 10: ExtractZBS(JBFS1
∪[0]K, · · · ,JBFS1

∪[w−
1]K, · · · , JBFSm

∪ [0]K, · · · ,JBFSm
∪ [w−1]K)

Input: JBFS1
∪[0]K, · · · ,JBFS1

∪[w−1]K, · · · ,JBFSm
∪ [0]K, · · · ,

JBFSm
∪ [w−1]K, the shares of the m binary FM

sketches
Result: ZN , the estimator extracted from the sketches

1 JZNK = 0;
2 for i = 1; i≤ m; i++ do
3 for j = 0; j ≤ w−1; j++ do
4 JBFSi

∪[j]K = 1− JBFSi
∪[j]K ; // negate the bit

5 end
6 size = w, t =

⌈ size
2
⌉
,JzN,iK = 0;

// binary search until not worth it
7 while size > 3 do
8 Jx+1K = 1+∑

t−1
l=0JBFSi

∪[l]K ;
// interpolate the lookup polynomial

9 (t,β0, · · · ,βt)← interpolate();
// B0 = 1 if x = 0, B0 = 0 otherwise

10 JB0K = Lookup(Jx+1K, t,β0, · · · ,βt);
11 JzN,iK = JzN,iK+ t · JB0K;
12 for j = 0; j < size− t; j++ do
13 JBFSi

∪[j]K = JBFSi
∪[j]K+ JB0K · JBFSi

∪[j+ t]K
;

14 end
15 if size is odd then
16 JBFSi

∪[size− t]K = JBFSi
∪[size− t]K+ JB0K;

17 end
18 size = t, t =

⌈ size
2
⌉
;

19 end
20 JxK = 1+∑

size−1
i=0 2i · JBFSi

∪[size−1]K;
// interpolate the lookup polynomial

21 (2size,β0, · · · ,β2size)← interpolate();
// final lookup for the rest of the bits

22 JzN,iK = JzN,iK+Lookup(JxK,2size,β0, · · · ,β2size);
23 JZNK = JZNK+ JzN,iK;
24 end
25 return ZN ← Output(JZNK);

982 30th USENIX Security Symposium USENIX Association

https://www.statista.com/statistics/413515/marks-and-spencer-mands-average-weekly-footfall-united-kingdom-uk/
https://www.statista.com/statistics/413515/marks-and-spencer-mands-average-weekly-footfall-united-kingdom-uk/
https://www.statista.com/statistics/413515/marks-and-spencer-mands-average-weekly-footfall-united-kingdom-uk/
https://www.nytimes.com/2013/07/15/business/attention-shopper-stores-are-tracking-your-cell.html
https://www.nytimes.com/2013/07/15/business/attention-shopper-stores-are-tracking-your-cell.html
https://www.nytimes.com/2013/07/15/business/attention-shopper-stores-are-tracking-your-cell.html
https://www.theguardian.com/technology/2016/jan/21/shops-track-smartphone-uk-privacy-watchdog-warns
https://www.theguardian.com/technology/2016/jan/21/shops-track-smartphone-uk-privacy-watchdog-warns
https://www.theguardian.com/technology/2016/jan/21/shops-track-smartphone-uk-privacy-watchdog-warns

	Introduction
	Related Work
	Preliminaries
	Flajolet-Martin (FM) Sketches
	SPDZ
	Differential Privacy
	Statistical Security
	Universal Composability (UC)

	The PDCE Protocol
	Overview
	Initialization Phase
	Offline Phase
	Data Collection Phase
	Data Aggregation Phase

	Security Analysis
	Protocol Security
	Differential Privacy
	Intuition
	Finding N0: Single FM SketchMore details and proofs can be found in the full version.
	Find N0: Multiple Sketches

	Experimental Evaluation
	Conclusion and Future Work
	Alternative Protocol for Extracting Estimator

